【题目】如图,已知
的两顶点坐标
,
,圆
是
的内切圆,在边
,
,
上的切点分别为
,
,
,
.
![]()
(Ⅰ)求证:
为定值,并求出动点
的轨迹
的方程;
(Ⅱ)过
的斜率不为零直线交曲线
于
、
两点,求证:
为定值.
科目:高中数学 来源: 题型:
【题目】2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:
是圆
的圆心,圆
过坐标原点
;点
、
均在
轴上,圆
与圆
的半径都等于2,圆
圆
均与圆
外切.已知直线
过点
.
(1)若直线
与圆
、圆
均相切,则
截圆
所得弦长为__________;
(2)若直线
截圆
、圆
、圆
所得弦长均等于
,则
__________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
、抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
,从每条曲线上取两个点,将其坐标记录于下表中:
| 3 |
| 4 |
|
|
| 0 |
|
|
(Ⅰ)求
的标准方程;
(Ⅱ)请问是否存在直线
满足条件:①过
的焦点
;②与
交不同两点
且满足
?若存在,求出直线
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
件次品和
件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出
件次品或者检测出
件正品时检测结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用
元,设
表示直到检测出
件次品或者检测出
件正品时所需要的检测费用(单位:元),求
的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年电子商务蓬勃发展,现从某电子商务平台评价系统中随机选出200次成功交易,并对其评价进行统计,统计结果显示:网购者对商品的满意率为0.70,对快递的满意率为0.60,其中对商品和快递都满意的交易为80次.
(1)根据已知条件完成下面的2×2列联表,并回答在犯错误的概率不超过0.10的前提下,能否认为“网购者对商品满意与对快递满意之间有关系”?
对快递满意 | 对快递不满意 | 合计 | |
对商品满意 | 80 | ||
对商品不满意 | |||
合计 | 200 |
(2)为进一步提高购物者的满意度,平台按分层抽样方法从200次交易中抽取10次交易进行问卷调查,详细了解满意与否的具体原因,并在这10次交易中再随机抽取2次进行电话回访,听取购物者意见.求电话回访的2次交易至少有一次对商品和快递都满意的概率.
附:
(其中
为样本容量)
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三人投篮的命中率各不相同,其中乙的命中率是甲的2倍,丙的命中率等于甲与乙的命中率之和.若甲与乙各投篮一次,每人投篮相互独立,则他们都命中的概率为0.18.
(1)求甲、乙、丙三人投篮的命中率;
(2)现要求甲、乙、丙三人各投篮一次,假设每人投篮相互独立,记三人命中总次数为
,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,
的顶点
,
,且
、
、
成等差数列.
(1)求
的顶点
的轨迹方程;
(2)直线
与顶点
的轨迹交于
两点,当线段
的中点
落在直线
上时,试问:线段
的垂直平分线是否恒过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为
,曲线C的极坐标方程为
.
(Ⅰ)求直线l和曲线C的直角坐标方程;
(Ⅱ)点M为曲线C上一点,求M到直线l的最小距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com