【题目】如图所示,在四棱锥
中,底面
是矩形,
平面
,AB 1,AP AD 2.
(1)求直线
与平面
所成角的正弦值;
(2)若点M,N分别在AB,PC上,且
平面
,试确定点M,N的位置.
![]()
【答案】(1)
;(2)M为AB的中点,N为PC的中点
【解析】
(1)由题意知,AB,AD,AP两两垂直.以
为正交基底,建立空间直角坐标系
,求平面PCD的一个法向量为
,由空间向量的线面角公式求解即可;(2)设
,利用
平面PCD,所以
∥
,得到
的方程,求解即可确定M,N的位置
(1)由题意知,AB,AD,AP两两垂直.
以
为正交基底,建立如图所示的空间
直角坐标系
,则![]()
从而![]()
设平面PCD的法向量![]()
则
即![]()
不妨取
则
.
所以平面PCD的一个法向量为
.
设直线PB与平面PCD所成角为
所以![]()
即直线PB与平面PCD所成角的正弦值为
.
(2)设
则![]()
设
则
而![]()
所以
.由(1)知,平面PCD的一个法向量为
,因为
平面PCD,所以
∥
.
所以
解得,
.
所以M为AB的中点,N为PC的中点.
![]()
科目:高中数学 来源: 题型:
【题目】某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是( )
![]()
A. 甲的极差是29 B. 甲的中位数是24
C. 甲罚球命中率比乙高 D. 乙的众数是21
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)当
时,求函数
的极值;
(2)设函数
在
处的切线方程为
,若函数
是
上的单调增函数,求
的值;
(3)是否存在一条直线与函数
的图象相切于两个不同的点?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《九章算术》中,将底面为直角三角形且侧棱垂直于底面的三棱柱称之为堑堵;将底面为矩形且一侧棱垂直于底面的四棱锥称之为阳马;将四个面均为直角三角形的四面体称之为鳖臑[biē nào].某学校科学小组为了节约材料,拟依托校园内垂直的两面墙和地面搭建一个堑堵形的封闭的实验室
,
是边长为2的正方形.
![]()
(1)若
是等腰三角形,在图2的网格中(每个小方格都是边长为1的正方形)画出堑堵的三视图;
(2)若
,
在
上,证明:
,并回答四面体
是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;
(3)当阳马
的体积最大时,求点
到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,
,
分别是椭圆
的左,右焦点,点P是椭圆E上一点,满足
轴,
.
![]()
(1)求椭圆E的离心率;
(2)过点
的直线l与椭圆E交于两点A,B,若在椭圆B上存在点Q,使得四边形OAQB为平行四边形,求直线l的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=
.
![]()
(1)求证:BD⊥平面PAC;
(2)求二面角P—CD—B余弦值的大小;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某区选派7名队员代表本区参加全市青少年围棋锦标赛,其中3名来自A学校且1名为女棋手,另外4名来自B学校且2名为女棋手
从这7名队员中随机选派4名队员参加第一阶段的比赛
求在参加第一阶段比赛的队员中,恰有1名女棋手的概率;
Ⅱ
设X为选出的4名队员中A、B两校人数之差的绝对值,求随机变量X的分布列和数学期望
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com