精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=x2+2bx+c(b,c∈R).
(1)若f(x)≤0的解集为{x|-1≤x≤1},求实数b,c的值;
(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实根分别在区间(-3,-2)和(0,1)内,求实数b的取值范围.
分析:(1)利用不等式的解集的两端点值和对应方程根的关系求出b,c的值即可.
(2)先由f(1)=0得到关于b,c的关系式c=-2b-1,代入f(x)+x+b=0得g(x)=x2+(2b+1)x-b-1的图象与x轴的交点在区间(-3,-2)和(0,1)内,画出对应图象,借助于图象找到函数满足的条件,进而求出实数b的取值范围.
解答:精英家教网解:(1)因为f(x)≤0的解集为{x|-1≤x≤1},
所以x2+2bx+c=0的根为-1,1.
故-1+1=-2b?b=0;
(-1)×1=c?c=-1.
所以b=0,c=-1.
(2)因为f(1)=0,所以1+2b+c=0?c=-2b-1.
所以f(x)+x+b=0即为x2+(2b+1)x-b-1=0.
令g(x)=x2+(2b+1)x-b-1
∵g(x)=f(x)+x+b=0的两个实根分别在区间(-3,-2)和(0,1)内,如图示
g(0)<0
g(1)>0
g(-3)>0
g(-2)<0
?
b>-1
b>-1
b>
1
5
b<
5
7
?
1
5
<b<
5
7

故实数b的取值范围是
1
5
<b<
5
7
点评:本题考查一元二次方程根的分布与系数的关系.在解决这一类型题时,常常是把其对应函数找出来,借助于图象来解.函数的图象直观地显示了函数的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案