【题目】已知椭圆
:
的左右焦点分别为
,
,
,
为椭圆
上的两动点,且以
,
,
,
四个点为顶点的凸四边形的面积的最大值为
.
(1)求椭圆
的离心率;
(2)若椭圆
经过点
,且直线
的斜率是直线
,
的斜率的等比中项,求
面积的取值范围.
科目:高中数学 来源: 题型:
【题目】在四棱锥
中,
,
.M为CD的中点.
![]()
(1)若点E为PC的中点,求证:BE∥平面PAD;
(2)当平面PBD⊥平面ABCD时,求点A到平面CEM的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知焦点在
轴上的抛物线
过点
,椭圆
的两个焦点分别为
,
,其中
与
的焦点重合,过点
与
的长轴垂直的直线交
于
,
两点,且
,曲线
是以坐标原点
为圆心,以
为半径的圆.
(1)求
与
的标准方程;
(2)若动直线
与
相切,且与
交于
,
两点,求
的面积
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,右焦点为
,左顶点为A,右顶点B在直线
上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P是椭圆C上异于A,B的点,直线
交直线
于点
,当点
运动时,判断以
为直径的圆与直线PF的位置关系,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】改革开放以来,伴随着我国经济持续增长,户均家庭教育投入
户均家庭教育投入是指一个家庭对家庭成员教育投入的总和
也在不断提高
我国某地区2012年至2018年户均家庭教育投入
单位:千元
的数据如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
户均家庭教育投入y |
|
|
|
|
|
|
|
求y关于t的线性回归方程;
利用
中的回归方程,分析2012年至2018年该地区户均家庭教育投入的变化情况,并预测2019年该地区户均家庭教育投入是多少.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(I)在答题卡上作出这些数据的频率分布直方图:
![]()
(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知点
在圆柱
的底面圆
上,
为圆
的直径.
![]()
(1)若圆柱
的体积
为
,
,
,求异面直线
与
所成的角(用反三角函数值表示结果);
(2)若圆柱
的轴截面是边长为2的正方形,四面体
的外接球为球
,求
两点在球
上的球面距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com