【题目】定义在R上的函数f(x)满足
,
.
(1)求函数f(x)的解析式;
(2)求函数g(x)的单调区间;
(3)给出定义:若s,t,r满足
,则称s比t更接近于r,当x≥1时,试比较
和
哪个更接近
,并说明理由.
【答案】(1)
.(2)答案不唯一,见解析;(3)当
时,
比
更靠近
.理由见解析
【解析】
(1)求出函数的导数,利用赋值法,求出f′(1)=f′(1)+2﹣2f(0),得到f(0)=1.然后求解f′(1),即可求出函数的解析式.
(2)求出函数的导数g′(x)=ex-a(x-1),结合a≥0,a<0,分求解函数的单调区间即可.
(3)构造
,
通过函数的导数,判断函数的单调性,结合当1≤x≤e时,当1≤x≤e时,推出|p(x)|<|q(x)|,说明
比ex﹣1+a更靠近lnx.当x>e时,通过作差,构造新函数,利用二次求导,判断函数的单调性,证明
比ex﹣1+a更靠近lnx.
(1)
,令x=1解得f(0)=1,
由
,令x=0得
,
,
∴
.
(2)∵
,
∴
,
![]()
①当
时,总有
,函数
在R上单调递增;
②当
时,由
得函数
在
上单调递增,由
得函数
在
上单调递减;
综上,当
时,总有
,函数
在R上单调递增;当
时,由
得函数
在
上单调递增,由
得函数
在
上单调递减.
(3)![]()
,
设
,
,
得
在[1,+∞]上递减,
所以当1≤x≤e时,
;
当x>e时,
<0,而
,
所以
在[1,+∞)上递增,![]()
则
在[1,+∞)上递增,
.
①当
时,
,
![]()
∴
在[1,+∞)上递减,
![]()
∴![]()
∴
比
更靠近
;
②当
时,![]()
∴
,![]()
∴![]()
∴
递减,![]()
∴![]()
∴
比
更靠近
;
综上所述,当
时,
比
更靠近
.
科目:高中数学 来源: 题型:
【题目】某电动汽车“行车数据”的两次记录如下表:
记录时间 | 累计里程 (单位:公里) | 平均耗电量(单位: | 剩余续航里程 (单位:公里) |
2019年1月1日 | 4000 | 0.125 | 280 |
2019年1月2日 | 4100 | 0.126 | 146 |
(注:累计里程指汽车从出厂开始累计行驶的路程,累计耗电量指汽车从出厂开始累计消耗的电量,平均耗电量=
,剩余续航里程=
,下面对该车在两次记录时间段内行驶100公里的耗电量估计正确的是
A. 等于12.5B. 12.5到12.6之间
C. 等于12.6D. 大于12.6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某高校学生中午午休时间玩手机情况,随机抽取了100名大学生进行调查.下面是根据调查结果绘制的学生日均午休时间的频率分布直方图,将日均午休时玩手机不低于40分钟的学生称为“手机控”.
![]()
(1)求列联表中未知量的值;
非手机控 | 手机控 | 合计 | |
男 |
|
|
|
女 |
| 10 | 55 |
合计 |
(2)能否有
的把握认为“手机控与性别有关”?
.
| 0.05 | 0.10 |
| 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】环境指数是“宜居城市”评比的重要指标.根据以下环境指数的数据,对名列前20名的“宜居城市”的环境指数进行分组统计,结果如表所示,现从环境指数在[4,5)和[7,8]内的“宜居城市”中随机抽取2个市进行调研,则至少有1个市的环境指数在[7,8]的概率为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控 | 非微信控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有
的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,再随机抽取3人赠送礼品,试求抽取3人中恰有2人是“微信控”的概率.
参考公式:
,其中
.
参考数据:
| 0.050 | 0.040 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴,以相同的长度单位建立极坐标系.己知直线
的直角坐标方程为
,曲线C的极坐标方程为
.
(1)设t为参数,若
,求直线
的参数方程和曲线C的直角坐标方程;
(2)已知:直线
与曲线C交于A,B两点,设
,且
,
,
依次成等比数列,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有如下三个命题:
甲:相交直线l、m都在平面
内,并且都不在平面
内;
乙:直线l、m中至少有一条与平面
相交;
丙:平面
与平面
相交.
当甲成立时
![]()
A. 乙是丙的充分而不必要条件
B. 乙是丙的必要而不充分条件
C. 乙是丙的充分且必要条件
D. 乙既不是丙的充分条件又不是丙的必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某校举行的航天知识竞赛中,参与竞赛文科生与理科生人数之比为
,且成绩分布在
,分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图如图所示.
文科生 | 理科生 | 合计 | |
获奖 | 5 | ||
不获奖 | |||
合计 | 200 |
![]()
参考公式:
(其中
为样本容量)
随机变量
的概率分布:
| 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)求
的值;
(2)填写上方的
列联表,并判断能否有超过
的把握认为“获奖与学生的文、理科有关”?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
(
)的离心率为
,圆
与
轴正半轴交于点
,圆
在点
处的切线被椭圆
截得的弦长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设圆
上任意一点
处的切线交椭圆
于点
,试判断
是否为定值?若为定值,求出该定值;若不是定值,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com