【题目】造纸术是我国古代四大发明之一.纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸.现在我国采用国际标准,规定以
、
、…、
;
、
、…、
等标记来表示纸张的幅面规格.复印纸幅面规格只采用
系列和
系列,其中
系列的幅面规格为:①
规格的纸张的幅宽(以
表示)和长度(以
表示)的比例关系为
;②将
纸张沿长度方向对开成两等分,便成为
规格.
纸张沿长度方向对开成两等分,便成为
规格,…,如此对开至
规格.现有
、
、
、…、
纸各一张.若
纸的面积为
,则这9张纸的面积之和等于______
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,
,若椭圆经过点
,且△PF1F2的面积为2.
(1)求椭圆
的标准方程;
(2)设斜率为1的直线
与以原点为圆心,半径为
的圆交于A,B两点,与椭圆C交于C,D两点,且
(
),当
取得最小值时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的
个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为
,且每粒种子是否发芽相互独立.对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.
(1)当
取何值时,有3个坑要补播种的概率最大?最大概率为多少?
(2)当
时,用
表示要补播种的坑的个数,求
的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,关于正方体
,有下列四个命题:
![]()
①
与平面
所成角为45°;
②三棱锥
与三棱锥
的体积比为
;
③存在唯一平面
.使
平面
且
截此正方体所得截面为正六边形;
④过
作平面
,使得棱
、
,
在平面
上的正投影的长度相等.则这样的平面
有且仅有一个.
上述四个命题中,正确命题的序号为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点
与定点
的距离和它到直线
的距离的比是常数
,设点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
的直线
与曲线
交于
,
两点,设
的中点为
,
,
两点为曲线
上关于原点
对称的两点,且
(
),求四边形
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
与抛物线
交于不同的两点
,
为抛物线
的焦点,
为坐标原点,
是
的重心,直线
恒过点
.
![]()
(1)若
,求直线
斜率的取值范围;
(2)若
是半椭圆
上的动点,直线
与抛物线
交于不同的两点
,
.当
时,求△
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面ABCD为直角梯形,BC//AD,且AD=2AB=2BC=2,∠BAD=90°,△PAD为等边三角形,平面ABCD⊥平面PAD;点E、M分别为PD、PC的中点.
![]()
(1)证明:CE//平面PAB;
(2)求三棱锥M﹣BAD的体积;
(3)求直线DM与平面ABM所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地种植常规稻A和杂交稻B,常规稻A的亩产稳定为500公斤,今年单价为3.50元/公斤,估计明年单价不变的可能性为10%,变为3.60元/公斤的可能性为60%,变为3.70元/公斤的可能性为30%.统计杂交稻B的亩产数据,得到亩产的频率分布直方图如下;统计近10年来杂交稻B的单价(单位:元/公斤)与种植亩数(单位:万亩)的关系,得到的10组数据记为
,并得到散点图如下,参考数据见下.
![]()
![]()
(1)估计明年常规稻A的单价平均值;
(2)在频率分布直方图中,各组的取值按中间值来计算,求杂交稻B的亩产平均值;以频率作为概率,预计将来三年中至少有二年,杂交稻B的亩产超过765公斤的概率;
(3)判断杂交稻B的单价y(单位:元/公斤)与种植亩数x(单位:万亩)是否线性相关?若相关,试根据以下的参考数据求出y关于x的线性回归方程;调查得知明年此地杂交稻B的种植亩数预计为2万亩.若在常规稻A和杂交稻B中选择,明年种植哪种水稻收入更高?
统计参考数据:
,
,
,
,
附:线性回归方程
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com