【题目】定义域均为D的三个函数
,
,
满足条件:对任意
,点
与点
都关于点
对称,则称
是
关于
的“对称函数”.已知函数
,
,
是
关于
的“对称函数“,记
的定义域为D,若对任意
,都存在
,使得
成立,则实数a的取值范围是( )
A..
B..
C..
D..![]()
科目:高中数学 来源: 题型:
【题目】已知四面体
中,棱
,
所在直线所成角为
,且
,
,
,面
和面
所成的锐二面角为
,面
和面
所成的锐二面角为
,当四面体
的体积取得最大值时( ).
A.
B.
C.
D.不能确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
分别为
内角
的对边,若
是锐角三角形,需要同时满足下列四个条件中的三个:
①
②
③
④![]()
(1)条件①④能否同时满足,请说明理由;
(2)以上四个条件,请在满足三角形有解的所有组合中任选一组,并求出对应的
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1-9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数中,能被3整除的概率是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:x2=2py(p>0),F为抛物线C的焦点.以F为圆心,p为半径作圆,与抛物线C在第一象限交点的横坐标为2.
(1)求抛物线C的方程;
(2)直线y=kx+1与抛物线C交于A,B两点,过A,B分别作抛物线C的切线l1,l2,设切线l1,l2的交点为P,求证:△PAB为直角三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年春节期间全国流行在微信群里发抢红包,现假设某人将688元发成手气红包50个,产生的手气红包频数分布表如下:
金额分组 |
|
|
|
|
|
|
频 数 | 3 | 9 | 17 | 11 | 8 | 2 |
(1)求产生的手气红包的金额不小于9元的频率;
(2)估计手气红包金额的平均数(同一组中的数据用该组区间的中点值作代表);
(3)在这50个红包组成的样本中,将频率视为概率.
①若红包金额在区间
内为最佳运气手,求抢得红包的某人恰好是最佳运气手的概率;
②随机抽取手气红包金额在
内的两名幸运者,设其手气金额分别为
,
,求事件“
”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com