【题目】选修4-5:不等式选讲
(Ⅰ)已知
,证明:
;
(Ⅱ)若对任意实数
,不等式
恒成立,求实数
的取值范围.
【答案】(Ⅰ)见解析;(Ⅱ)
.
【解析】试题分析:(Ⅰ)利用条件
运用基本不等式,将原式化为
,再应用条件
,即可得结果;(Ⅱ)“对任意实数
,不等式
恒成立”等价于“
”,只需求出
的最小值即可得结果.
试题解析:(Ⅰ)证明:因为
,
所以
.
所以要证明
,
即证明
.
因为![]()
,
所以
.
因为
,所以
.
所以
.
(Ⅱ)设
,
则“对任意实数
,不等式
恒成立”等价于“
”.
当
时, ![]()
此时
,
要使
恒成立,必须
,解得
.
当
时,
不可能恒成立.
当
时, ![]()
此时
,
要使
恒成立,必须
,解得
.
综上可知,实数
的取范为
.
【方法点晴】本题主要考查绝对值不等式的解法以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数
恒成立(
可)或
恒成立(
即可);② 数形结合(
图象在
上方即可);③ 讨论最值
或
恒成立;④ 讨论参数.本题是利用方法 ③ 求得
的范围.
科目:高中数学 来源: 题型:
【题目】已知点
是圆心为
的圆
上的动点,点
,
为坐标原点,线段
的垂直平分线交
于点
.
(1)求动点
的轨迹
的方程;
(2)过原点
作直线
交(1)中的轨迹
于点
,点
在轨迹
上,且
,点
满足
,试求四边形
的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
,函数g(x)=asin(
)﹣2α+2(a>0),若存在x1 , x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是( )
A.[
]
B.(0,
]
C.[
]
D.[
,1]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,已知直线
的普通方程为
,曲线
的参数方程为
(
为参数),设直线
与曲线
交于
,
两点.
(Ⅰ)求线段
的长;
(Ⅱ)已知点
在曲线
上运动,当
的面积最大时,求点
的坐标及
的最大面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
与
、
轴交于
、
两点.
(Ⅰ)若点
、
分别是双曲线
的虚轴、实轴的一个端点,试在平面上找两点
、
,使得双曲线
上任意一点到
、
这两点距离差的绝对值是定值.
(Ⅱ)若以原点
为圆心的圆
截直线
所得弦长是
,求圆
的方程以及这条弦的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前n项和为
,
,且对任意正整数n,点(
,
)在直线
上.
(1)求数列
的通项公式;
(2)是否存在实数λ,使得数列{
}为等差数列?若存在,求出λ的值;若不存在,请说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.在(0,
)内,sinx>cosx
B.函数y=2sin(x+
)的图象的一条对称轴是x=
π
C.函数y=
的最大值为π
D.函数y=sin2x的图象可以由函数y=sin(2x﹣
)的图象向右平移
个单位得到
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com