【题目】如图是我国2010年至2016年生活垃圾无害化处理量(单位:亿吨)的折线图.
![]()
注:年份代码1~7分别对应年份2010~2016.
(Ⅰ)由折线图看出,可用线性回归模型拟合
与
的关系,请用相关系数加以说明;
(Ⅱ)建立
关于
的回归方程(系数精确到0.01),预测2018年我国生活垃圾无害化处理量.
参考数据:
,
,
,
.
参考公式:相关系数
,回归方程
中斜率和截距的最小二乘估计公式分别为
,
.
科目:高中数学 来源: 题型:
【题目】某高三理科班共有60名同学参加某次考试,从中随机挑选出5名同学,他们的数学成绩
与物理成绩
如下表:
![]()
数据表明
与
之间有较强的线性关系.
(1)求
关于
的线性回归方程;
(2)该班一名同学的数学成绩为110分,利用(1)中的回归方程,估计该同学的物理成绩;
(3)本次考试中,规定数学成绩达到125分为优秀,物理成绩达到100分为优秀.若该班数学优秀率与物理优秀率分别为
和
,且除去抽走的5名同学外,剩下的同学中数学优秀但物理不优秀的同学共有5人.能否在犯错误概率不超过0.01的前提下认为数学优秀与物理优秀有关?
参考数据:回归直线的系数
,
.
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,半圆的直径
,
为圆心,
,
为半圆上的点.
![]()
(Ⅰ)请你为
点确定位置,使
的周长最大,并说明理由;
(Ⅱ)已知
,设
,当
为何值时,
(ⅰ)四边形
的周长最大,最大值是多少?
(ⅱ)四边形
的面积最大,最大值是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数g(x)=
(a∈R),f(x)=ln(x+1)+g(x).
(1)若函数g(x)过点(1,1),求函数f(x)的图象在x=0处的切线方程;
(2)判断函数f(x)的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的一个焦点与抛物线
的焦点
重合,且椭圆短轴的两个端点与点
构成正三角形.
(1)求椭圆的方程;
(2)若过点
的直线
与椭圆交于不同的两点
,试问在
轴上是否存在定点
,使
恒为定值?若存在,求出
的坐标,并求出这个定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
与
的图象关于
轴对称,当函数
和
在区间
同时递增或同时递减时,把区间
叫做函数
的“不动区间”.若区间
为函数
的“不动区间”,则实数
的取值范围是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,x
R其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在区间(-3,0)内恰有两个零点,求a的取值范围;
(Ⅲ)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记
,求函数g(t)在区间[-4,-1]上的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com