【题目】已知关于
的不等式
有且仅有两个正整数解(其中e=2.71828… 为自然对数的底数),则实数
的取值范围是( )
A. (
,
] B. (
,
] C. [
,
) D. [
,
)
科目:高中数学 来源: 题型:
【题目】已知直线
过点
,且与
轴、
轴都交于正半轴,当直线
与坐标轴围成的三角形面积取得最小值时,求:
(1)直线
的方程;
(2)直线l关于直线m:y=2x-1对称的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
:
,圆
:
.
(Ⅰ)设直线
被圆
所截得的弦的中点为
,判断点
与圆
的位置关系;
(Ⅱ)设圆
被圆
截得的一段圆弧(在圆
内部,含端点)为
,若直线
:
与圆弧
只有一个公共点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+
,过A作AE⊥CD,垂足为E,现将△ADE沿AE折叠,使得DE⊥EC.
![]()
(1)求证:BC⊥面CDE;
(2)在线段AE上是否存在一点R,使得面BDR⊥面DCB,若存在,求出点R的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,二次函数
的图像与x轴交于
和
,与y轴交于C点,且
是等腰三角形.
![]()
(1)求
的解析式;
(2)在A、B之间的抛物线段上是否存在异于A、B的点D,使
与
的面积相等?若存在,求D点的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在平行四边形
中,
点
是
边的中点,将
沿
折起,使点
到达点
的位置,且![]()
(1)求证; 平面
平面
;
(2)若平面
和平面
的交线为
,求二面角
的余弦值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com