【题目】2019年第十三届女排世界杯共12支参赛球队,比赛赛制釆取单循环方式,即每支球队进行11场比赛,最后靠积分选出最后冠军.积分规则如下(比赛采取5局3胜制):比赛中以3—0或3—1取胜的球队积3分,负队积0分;而在比赛中以3—2取胜的球队积2分,负队积1分.9轮过后,积分榜上的前2名分别为中国队和美国队,中国队积26分,美国队积22分.第10轮中国队对抗塞尔维亚队,设每局比赛中国队取胜的概率为
.
(1)第10轮比赛中,记中国队3—1取胜的概率为
,求
的最大值点
.
(2)以(1)中的
作为
的值.
(i)在第10轮比赛中,中国队所得积分为
,求
的分布列;
(ⅱ)已知第10轮美国队积3分,判断中国队能否提前一轮夺得冠军(第10轮过后,无论最后一轮即第11轮结果如何,中国队积分最多)?若能,求出相应的概率;若不能,请说明理由.
【答案】(1)见解析(2)(i)见解析(ⅱ)见解析
【解析】
(1)先得出
,结合导数得出函数
的单调性,进而得出
的最大值点
;
(2)(i)先得出
的可能取值,再得出其相应概率,列出分布列即可;
(ⅱ)若中国队在第10轮比赛中,获得
积分,则总积分为
分,即便美国队第
都获得
分,则总积分为
分,则中国队可以提前一轮夺得冠军,最后由(i)得出其概率.
(1)![]()
由此![]()
令
,得![]()
当
时,
在
上为增函数;
当
时,
在
上为减函数;
所以
的最大值点![]()
(2)由(1)知![]()
(i)
可取![]()
![]()
![]()
![]()
![]()
所以
的分布列为
|
|
|
|
|
|
|
|
|
|
(ⅱ)若
,则中国队
轮后的总积分为
分,美国队即便第
轮和第
轮都积
分,则
轮过后的总积分是
分,
,所以,中国队如果第
轮积
分,则可提前一轮夺得冠军,其概率为![]()
科目:高中数学 来源: 题型:
【题目】近年来,共享单车在我国各城市迅猛发展,为人们的出行提供了便利,但也给城市的交通管理带来了一些困难,为掌握共享单车在
省的发展情况,某调查机构从该省抽取了5个城市,并统计了共享单车的
指标
和
指标
,数据如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
| 2 | 4 | 5 | 6 | 8 |
| 3 | 4 | 4 | 4 | 5 |
(1)试求
与
间的相关系数
,并说明
与
是否具有较强的线性相关关系(若
,则认为
与
具有较强的线性相关关系,否则认为没有较强的线性相关关系).
(2)建立
关于
的回归方程,并预测当
指标为7时,
指标的估计值.
(3)若某城市的共享单车
指标
在区间
的右侧,则认为该城市共享单车数量过多,对城市的交通管理有较大的影响交通管理部门将进行治理,直至
指标
在区间
内现已知
省某城市共享单车的
指标为13,则该城市的交通管理部门是否需要进行治理?试说明理由.
参考公式:回归直线
中斜率和截距的最小二乘估计分别为
,,
相关系数![]()
参考数据:
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直三棱柱ABC﹣A1B1C1中,平面ABC是下底面.M是BB1上的点,AB=3,BC=4,AC=5,CC1=7,过三点A、M、C1作截面,当截面周长最小时,截面将三棱柱分成的上、下两部分的体积比为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是2020年2月15日至3月2日武汉市新增新冠肺炎确诊病例的折线统计图.则下列说法不正确的是( )
![]()
A.2020年2月19日武汉市新增新冠肺炎确诊病例大幅下降至三位数
B.武汉市在新冠肺炎疫情防控中取得了阶段性的成果,但防控要求不能降低
C.2020年2月19日至3月2日武汉市新增新冠肺炎确诊病例低于400人的有8天
D.2020年2月15日到3月2日武汉市新增新冠肺炎确诊病例最多的一天比最少的一天多1549人
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据相关数据统计,2019年底全国已开通
基站13万个,部分省市的政府工作报告将“推进
通信网络建设”列入2020年的重点工作,今年一月份全国共建基站3万个.
(1)如果从2月份起,以后的每个月比上一个月多建设2000个,那么,今年底全国共有基站多少万个.(精确到0.1万个)
(2)如果计划今年新建基站60万个,到2022年底全国至少需要800万个,并且,今后新建的数量每年比上一年以等比递增,问2021年和2022年至少各建多少万个オ能完成计划?(精确到1万个)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直角梯形
中,
,
、
分别是
、
上的点,
,且
(如图①).将四边形
沿
折起,连接
、
、
(如图②).在折起的过程中,则下列表述:
①
平面
;
②四点
、
、
、
可能共面;
③若
,则平面
平面
;
④平面
与平面
可能垂直.其中正确的是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为实常数且
).
(Ⅰ)当
时;
①设
,判断函数
的奇偶性,并说明理由;
②求证:函数
在
上是增函数;
(Ⅱ)设集合
,若
,求
的取值范围(用
表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com