精英家教网 > 高中数学 > 题目详情

【题目】已知函数)在同一半周期内的图象过点 ,其中为坐标原点, 为函数图象的最高点, 为函数的图象与轴的正半轴的交点, 为等腰直角三角形.

(1)求的值;

(2)将绕原点按逆时针方向旋转角,得到,若点恰好落在曲线)上(如图所示),试判断点是否也落在曲线)上,并说明理由.

【答案】(1)2;(2)见解析.

【解析】试题分析:1)由已知利用周期公式可求最小正周期,由题意可求Q坐标为(40).P坐标为(2 ),结合OPQ为等腰直角三角形,即可得解

2)由(Ⅰ)知, ,可求点P′,Q′的坐标,由点在曲线,(x>0)上,利用倍角公式,诱导公式可求,又结合,,可求的值,由于,即可证明点Q′不落在曲线)上.

试题解析:

(1)因为函数)的最小正周期,所以函数的半周期为

所以,即有坐标为

又因为为函数图象的最高点,所以点的坐标为.

又因为为等腰直角三角形,所以.

(2)点不落在曲线)上,理由如下:

由(1)知,

所以点 的坐标分别为 .

因为点在曲线)上,所以,即,又,所以.

.所以点不落在曲线)上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的右顶点为,上顶点为,离心率 为坐标原点,圆与直线相切.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知四边形内接于椭圆.记直线的斜率分别为,试问是否为定值?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱底面,的中点,.

(1)求证:平面

(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求的极值;

(2)若有两个不同的极值点 ,求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)试讨论的单调性;

(2)若有两个极值点 ,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着科技发展,手机成了人们日常生活中必不可少的通信工具,现在的中学生几乎都拥有了属于自己的手机了.为了调查某地区高中生一周使用手机的频率,某机构随机调查了该地区100名高中生某一周使用手机的时间(单位:小时),所取样本数据分组区间为,由此得到如图所示的频率分布直方图.

(1)求的值并估计该地区高中生一周使用手机时间的平均值;

(2)从使用手机时间在的四组学生中,用分层抽样方法抽取13人,则每层各应抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知是直角梯形 平面.

(1)证明:

2的中点,证明: 平面

(3)若求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin 2x-cos2x-,xR

(1)求函数f(x)的最小值和最小正周期;

(2)设ABC的内角A、B、C的对边分别为a、b、c,且c=,f(C)=0,若sin B=2sin A,求a,b的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (mn为常数,e = 2.718 28…是自然对数的底数),曲线y = f (x)在点(1,f (1))处的切线方程是

(Ⅰ)求mn的值;

(Ⅱ)求f (x)的最大值

() (其中为f (x)的导函数),证明:对任意x > 0都有

(注: )

查看答案和解析>>

同步练习册答案