【题目】已知函数
有极值,且导函数
的极值点是
的零点,给出命题:①
;②若
,则存在
,使得
;③
与
所有极值之和一定小于0;④若
,且
是曲线
的一条切线,则
的取值范围是
.则以上命题正确序号是_____________.
【答案】①②③④
【解析】
列出关系式求解
与
的关系,化简函数的解析式,利用函数的零点判断①的正误;通过
的范围,结合函数的图象判断②的正误;求出极值之和判断③正误;利用函数的导数结合函数的切线方程,转化推出参量的范围判断④的正误即可.
解:①正确;
函数
的导函数为:
;且导函数
的极值点是
的零点
得
,当
时,
,
单调递减;当
时,
,
单调递增,故
是
的极小值点;
即
;
;
函数
有极值;
中,
;
解得:
;
②正确;
当
时,
有两个不等的实根,设为
,
;
由①知,
是
的极小值点;
![]()
,
当
时,
,
单调递增,
当
时,
,
单调递减,
当
时,
,
单调递增,
当
时,
,
当
时,
,
存在
,使得
;
③正确;
由①知
极值为![]()
设
有两个不等的实根,设为
,
;
,![]()
的两个极值
,
![]()
![]()
![]()
![]()
与
所有极值之和为:
.
④正确;
,
当
时,![]()
若
.
解得
,
如图:且
是
的一条切线,![]()
设切点坐标
,
,则
,
,
因为
,
,
,
,![]()
,
.
故答案为:①②③④.
![]()
![]()
科目:高中数学 来源: 题型:
【题目】某快递公司收取快递费用的标准是:重量不超过
的包裹收费10元;重量超过
的包裹,除收费10元之外,超过
的部分,每超出
(不足
,按
计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).
![]()
(1)求这60天每天包裹数量的平均值和中位数;
(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.已知公司前台有工作人员3人,每人每天工资100元,以样本估计总体,试估计该公司每天的利润有多少元?
(3)小明打算将
四件礼物随机分成两个包裹寄出,且每个包裹重量都不超过
,求他支付的快递费为45元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于圆周率
,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计
的值:先请
名同学,每人随机写下一个都小于
的正实数对
,再统计两数能与
构成钝角三角形三边的数对
的个数
;最后再根据统计数m来估计
的值.假如统计结果是
那么可以估计
______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某小区2017年1月至2018年1月当月在售二手房均价(单位:万元/平方米)的散点图.(图中月份代码1—13分别对应2017年1月—2018年1月)
![]()
由散点图选择
和
两个模型进行拟合,经过数据处理得到两个回归方程分别为
和
,并得到以下一些统计量的值:
|
| |
残差平方和 | 0.000591 | 0.000164 |
总偏差平方和 | 0.006050 | |
(1)请利用相关指数
判断哪个模型的拟合效果更好;
(2)某位购房者拟于2018年6月份购买这个小区
平方米的二手房(欲
购房为其家庭首套房).若购房时该小区所有住房的房产证均已满2年但未满5年,请你利用(1)中拟合效果更好的模型估算该购房者应支付的购房金额.(购房金额=房款+税费;房屋均价精确到0.001万元/平方米)
附注:根据有关规定,二手房交易需要缴纳若干项税费,税费是按房屋的计税价格进行征收.(计税价格=房款),征收方式见下表:
契税 (买方缴纳) | 首套面积90平方米以内(含90平方米)为1%;首套面积90平方米以上且144平方米以内(含144平方米)为1.5%;面积144平方米以上或非首套为3% |
增值税 (卖方缴纳) | 房产证未满2年或满2年且面积在144平方米以上(不含144平方米)为5.6%;其他情况免征 |
个人所得税 (卖方缴纳) | 首套面积144平方米以内(含144平方米)为1%;面积144平方米以上或非首套均为1.5%;房产证满5年且是家庭唯一住房的免征 |
参考数据:
,
,
,
,
,
,
,
. 参考公式:相关指数
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知A、B、C是长轴长为4的椭圆E上的三点,点A是长轴的一个端点,BC过椭圆中心O,且
,
.
![]()
(Ⅰ)求椭圆E的方程;
(Ⅱ)设
是以原点为圆心,短轴长为半径的圆,过椭圆E上异于其顶点的任一点P,作
的两条切线,切点分别为M,N,若直线MN在x轴、y轴上的截距分别为m,n,试计算
的值是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com