【题目】已知等差数列{an}的前n项和为Sn , 且满足S4=24,S7=63. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若
,求数列{bn}的前n项和Tn .
科目:高中数学 来源: 题型:
【题目】设F1 , F2为双曲线C:
的左,右焦点,P,Q为双曲线C右支上的两点,若
=2
,且
=0,则该双曲线的离心率是( )
A.![]()
B.2
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果数列
,
,
,
(
,且
),满足:①
,
;
②
,那么称数列
为“
”数列.
(
)已知数列
,
,
,
;数列
,
,
,
,
.试判断数列
,
是否为“
”数列.
(
)是否存在一个等差数列是“
”数列?请证明你的结论.
(
)如果数列
是“
”数列,求证:数列
中必定存在若干项之和为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x的不等式|x﹣3|+|x﹣m|≥2m的解集为R. (Ⅰ)求m的最大值;
(Ⅱ)已知a>0,b>0,c>0,且a+b+c=m,求4a2+9b2+c2的最小值及此时a,b,c的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
且
,设命题
:函数
在
上单调递减,命题
:对任意实数
,不等式
恒成立.
(1)写出命题
的否定,并求非
为真时,实数
的取值范围;
(2)如果命题“
”为真命题,且“
”为假命题,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司在迎新年晚会上举行抽奖活动,有甲,乙两个抽奖方案供员工选择. 方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为
,第一次抽奖,若未中奖,则抽奖结束,若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,则获得1000元;若未中奖,则所获得奖金为0元.
方案乙:员工连续三次抽奖,每次中奖率均为
,每次中奖均可获得奖金400元.
(Ⅰ)求某员工选择方案甲进行抽奖所获奖金X(元)的分布列;
(Ⅱ)试比较某员工选择方案乙与选择方案甲进行抽奖,哪个方案更划算?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学要从高一年级甲、乙两个班级中选择一个班参加市电视台组织的“环保知识竞赛”.该校对甲、乙两班的参赛选手(每班7人)进行了一次环境知识测试,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85分,乙班学生成绩的中位数是85.
![]()
(1)求
的值;
(2)根据茎叶图,求甲、乙两班同学成绩的方差的大小,并从统计学角度分析,该校应选择甲班还是乙班参赛.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AA1=2,AC=
,过BC的中点D作平面ACB1的垂线,交平面ACC1A1于E,则BE与平面ABB1A1所成角的正切值为( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com