【题目】设
,函数
.
(1)若
无零点,求实数
的取值范围.
(2)若
,证明:
.
【答案】(1)
;(2)见解析
【解析】
(1)求出函数的导数,通过讨论a的范围求出函数的单调性及值域,确定a的范围即可;
(2)问题转化为证明ex﹣2x2+x﹣1>0(x>0)恒成立,令g(x)=ex﹣2x2+x﹣1>0,(x>0),求导分析函数的单调性及最值,证明即可.
(1)∵
,∴
定义域是
又
,
①当
时,无零点;
②当
时,
,故
在
上为减函数,
又
当
时,
,所以
有唯一的零点;
③当
时,
∴
在
递增,在
递减,
∴
,则只要
,即
,
∴
而
,∴
,
综上所述:所求
的范围是
.
(2)
时,
,
,
要证
,问题转化为证明
,
整理得:
恒成立,
令
,
,
故
在
递减,在
递增,
故
,
故存在
,
使得
,
故当
或
时,
递增,
当
时,
递减,
故
的最小值是
或
,
由
,得
,
,
∵
,故
,
故
时,
,原不等式成立.
科目:高中数学 来源: 题型:
【题目】某中学2018年的高考考生人数是2015年高考考生人数的
倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:
![]()
则下列结论正确的是
![]()
A. 与2015年相比,2018年一本达线人数减少
B. 与2015年相比,2018年二本达线人数增加了
倍
C. 2015年与2018年艺体达线人数相同
D. 与2015年相比,2018年不上线的人数有所增加
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
上一点
到焦点
的距离
,倾斜角为
的直线经过焦点
,且与抛物线交于两点
、
.
(1)求抛物线的标准方程及准线方程;
(2)若
为锐角,作线段
的中垂线
交
轴于点
.证明:
为定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:曲线
称为椭圆
的“倒椭圆”.已知椭圆
,它的“倒椭圆”
.
(1)写出“倒椭圆”
的一条对称轴、一个对称中心;并写出其上动点横坐标x的取值范围.
(2)过“倒椭圆”
上的点P,作直线PA垂直于x轴且垂足为点A,作直线PB垂直于y轴且垂足为点B,求证:直线AB与椭圆
只有一个公共点.
(3)是否存在直线l与椭圆
无公共点,且与“倒椭圆”
无公共点?若存在,请给出满足条件的直线l,并说明理由;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点为极点,
轴正半轴为极轴建立极坐标系.直线
的极坐标方程为
.
(1)求曲线
的极坐标方程与直线
的直角坐标方程;
(2)已知直线
与曲线
交于
两点,与
轴交于点
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过圆锥轴的截面为等腰直角三角形
,
为底面圆周上一点,已知
,圆锥体积为
,点
为底面圆的圆心
![]()
(1)求该圆锥的全面积
(2)求异面直线
与
所成角的大小(结果用反三角函数表示)
(3)求点
到平面
的距离
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点,现将△AFD沿AF折起,使平面ABD⊥平面ABC,则二面角D﹣AF﹣B的平面角余弦值的取值范围是_____.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com