精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左,右两个焦点为,抛物线与椭圆有公共焦点.且两曲线在第一象限的交点的横坐标为.

1)求椭圆和抛物线的方程;

2)直线与抛物线的交点为为坐标原点),与椭圆的交点为在线段上),且.问满足条件的直线有几条,说明理由.

【答案】1;(2)满足条件的直线条,理由见解析.

【解析】

1)由椭圆和抛物线的公共焦点可求得抛物线的标准方程,再由点在抛物线上可求得点的坐标,利用椭圆的定义可求得的值,进而求得的值,由此可得出椭圆的标准方程;

2)将直线的方程分别与椭圆、抛物线的方程联立,分别求得点的横坐标,由可知点为线段的中点,利用中点坐标公式可得出关于的等式,

1)由于椭圆和抛物线的公共焦点为,故椭圆的焦点坐标为.

所以,所以抛物线的方程

由点在抛物线上,所以

又点又在椭圆上,所以

所以,又,故

从而椭圆的方程为

2)联立直线与椭圆方程得,得

解得.

联立直线与抛物线得,得,解得

,故为线段的中点,

,得

化简得,解得(负值含去),

故满足题意的值有个,从而存在过原点的有两条直线满足题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知的内角的对边分别为.为线段上一点,,有下列条件:

;②;③.

请从以上三个条件中任选两个,求的大小和的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是直角梯形,,且的中点.

(1)求证:平面平面

(2)若二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线处切线的斜率为,判断函数的单调性;

2)若函数有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了20171月至201912月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论正确的是( )

A.年接待游客量逐年增加

B.各年的月接待游客量高峰期大致在8

C.20171月至12月月接待游客量的中位数为30

D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是无穷数列.给出两个性质:

①对于中任意两项,在中都存在一项,使

②对于中任意项,在中都存在两项.使得

(),判断数列是否满足性质①,说明理由;

(),判断数列是否同时满足性质①和性质②,说明理由;

()是递增数列,且同时满足性质①和性质②,证明:为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是抛物线上的两个不同的点,是坐标原点,若直线的斜率之积为,则下列结论正确的是(

A.

B.为直径的圆面积的最小值为

C.直线过抛物线的焦点

D.到直线的距离不大于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数,则下列说法正确的是( )

A.,则的图象上存在唯一一对关于原点对称的点

B.存在实数使得的图象上存在两对关于原点对称的点

C.不存在实数使得的图象上存在两对关于轴对称的点

D.的图象上存在关于轴对称的点,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Keep是一款具有社交属性的健身APP,致力于提供健身教学、跑步、骑行、交友及健身饮食指导、装备购买等一站式运动解决方案.Keep可以让你随时随地进行锻炼,记录你每天的训练进程.不仅如此,它还可以根据不同人的体质,制定不同的健身计划.小明根据Keep记录的20191月至201911月期间每月跑步的里程(单位:十公里)数据整理并绘制了下面的折线图.根据该折线图,下列结论正确的是(

A.月跑步里程最小值出现在2

B.月跑步里程逐月增加

C.月跑步里程的中位数为5月份对应的里程数

D.1月至5月的月跑步里程相对于6月至11月波动性更小

查看答案和解析>>

同步练习册答案