精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}是首项为正数的等差数列,a1a2=3,a2a3=15.
(1)求数列{an}的通项公式;
(2)设bn=(an+1)2 ,求数列{bn}的前n项和Tn

【答案】
(1)解:设数列{an}的公差为d,

因为a1a2=3,a2a3=15.

解得a1=1,d=2,所以an=2n﹣1


(2)解:由(1)知bn=(an+1)2 =2n22n4=n4n

Tn=141+242+343+…+n4n

4Tn=142+243+…+(n﹣1)4n+n4n+1

两式相减,得﹣3Tn=41+42+43+…+4n﹣n4n+1

= ﹣n4n+1=

所以Tn=


【解析】(1)设数列{an}的公差为d,由a1a2=3,a2a3=15.解得a1=1,d=2,即可得an=2n﹣1.(2)由(1)知bn=(an+1)2 =2n22n4=n4n , 利用错位相减法求和即可

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在x轴上的椭圆的一个顶点坐标为(0,1),其离心率为
(1)求椭圆的标准方程;
(2)椭圆上一点P满足∠F1PF2=60°,其中F1 , F2为椭圆的左右焦点,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式ax2﹣(a+1)x+1<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是我国2009年至2015年生活垃圾无害化处理量(单位:亿吨)的折线图.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2017年我国生活垃圾无害化处理量.
参考数据: yi=9.32, tiyi=40.17, =0.55, ≈2.646.
参考公式:相关系数r= =
回归方程 = + t中斜率和截距的最小二乘估计公式分别为: = = t.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中是然对数底数.

(1)若函数有两个不同的极值点 ,求实数的取值范围;

(2)当时,求使不等式在一切实数上恒成立的最大正整数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,根据现行国家标准GB3095﹣2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75毫克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2012年全年每天的PM2.5监测值数据中随机地抽取10天的数据作为样本,监测值频数如表所示:

PM2.5日均值
(微克/立方米)

[25,35]

(35,45]

(45,55]

(55,65]

(65,75]

(75,85]

频数

3

1

1

1

1

3


(1)从这10天的PM2.5日均值监测数据中,随机抽取3天,求恰有1天空气质量达到一级的概率;
(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列;
(3)以这10天的PM2.5日均值来估计一年的空气质量状况,则一年(按366天算)中平均有多少天的空气质量达到一级或二级.(精确到整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.已知函数

(1)当时,求曲线在点处的切线方程;

(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=x+sin|x|,x∈[﹣π,π]的大致图象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin(2x﹣ ),x∈R的图象,只需将函数y=sin2x,x∈R的图象上所有的点(
A.向左平行移动 个单位长度
B.向右平行移动 个单位长度
C.向左平行移动 个单位长度
D.向右平行移动 个单位长度

查看答案和解析>>

同步练习册答案