【题目】已知正项数列
的前n项和
满足![]()
(1)求数列
的通项公式;
(2)若
(n∈N*),求数列
的前n项和
;
(3)是否存在实数
使得
对
恒成立,若存在,求实数
的取值范围,若不存在说明理由.
【答案】(1)
(2)
(3)存在,![]()
【解析】
(1)根据
与
的关系
,即可求出
的通项公式;
(2)由
,可采用裂项相消法求数列
的前n项和
;
(3)假设存在实数λ,使得
对一切正整数恒成立,
即
对一切正整数恒成立,只需满足
即可,利用作差法得出
其单调性,即可求解.
(1)当n=1时,a1=2或-1(舍去).
当n≥2时,
,
整理可得:(an+an-1)(an-an-1-1)=0,可得an-an-1=1,
∴{an}是以a1=2为首项,d=1为公差的等差数列.∴
.
(2)由(1)得an=n+1,∴
.
∴
.
(3)假设存在实数λ,使得
对一切正整数恒成立,
即
对一切正整数恒成立,只需满足
即可,
令
,则![]()
当![]()
故f(1)=1,f(2)=
,f(3)=
,
>f(5)>f(6)>…
当n=3时有最小值
,所以
.
科目:高中数学 来源: 题型:
【题目】某生产企业对其所生产的甲、乙两种产品进行质量检测,分别各抽查6件产品,检测其重量的误差,测得数据如下(单位:
):
甲:13 15 13 8 14 21
乙:15 13 9 8 16 23
(1)画出样本数据的茎叶图;
(2)分别计算甲、乙两组数据的方差并分析甲、乙两种产品的质量(精确到0.1)。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC-A1B1C1中,AA1
AB
AC
2,AB⊥AC,M是棱BC的中点点P在线段A1B上.
(1)若P是线段A1B的中点,求直线MP与直线AC所成角的大小;
(2)若
是
的中点,直线
与平面
所成角的正弦值为
,求线段BP的长度.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】求解下列各题.
(1)已知
,且
为第一象限角,求
,
;
(2)已知
,且
为第三象限角,求
,
;
(3)已知
,且
为第四象限角,求
,
;
(4)已知
,且
为第二象限角,求
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为椭圆
的左右焦点,点
在椭圆上,且
.
(1)求椭圆
的方程;
(2)过
的直线
分别交椭圆
于
和
,且
,问是否存在常数
,使得
等差数列?若存在,求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高三理科班共有60名同学参加某次考试,从中随机挑选出5名同学,他们的数学成绩
与物理成绩
如下表:
![]()
数据表明
与
之间有较强的线性关系.
(1)求
关于
的线性回归方程;
(2)该班一名同学的数学成绩为110分,利用(1)中的回归方程,估计该同学的物理成绩;
(3)本次考试中,规定数学成绩达到125分为优秀,物理成绩达到100分为优秀.若该班数学优秀率与物理优秀率分别为
和
,且除去抽走的5名同学外,剩下的同学中数学优秀但物理不优秀的同学共有5人.能否在犯错误概率不超过0.01的前提下认为数学优秀与物理优秀有关?
参考数据:回归直线的系数
,
.
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知圆
的方程为:
,直线
的方程为
.
(1)求证:直线
恒过定点;
(2)当直线
被圆
截得的弦长最短时,求直线
的方程;
(3)在(2)的前提下,若
为直线
上的动点,且圆
上存在两个不同的点到点
的距离为
,求点
的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
的直角边OA在x轴上,顶点B的坐标为
,直线CD交AB于点
,交x轴于点
.
![]()
(1)求直线CD的方程;
(2)动点P在x轴上从点
出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t.
①点P在运动过程中,是否存在某个位置,使得
?若存在,请求出点P的坐标;若不存在,请说明理由;
②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com