【题目】如图,已知椭圆
的右焦点为
,点
分别是椭圆
的上、下顶点,点
是直线
上的一个动点(与
轴的交点除外),直线
交椭圆于另一个点
.
![]()
(1)当直线
经过椭圆的右焦点
时,求
的面积;
(2)①记直线
的斜率分别为
,求证:
为定值;
②求
的取值范围.
【答案】(1)
(2)①见解析②![]()
【解析】
试题(1)先联立直线
的方程为
与椭圆方程
的方程组,求出交点
坐标
,进而求出点到直线的距离公式求出上的高
,运用三角形的面积公式求解;(2)先求出斜率
的值,再计算其积进行推算;先运用直线与椭圆的位置关系计算出向量的
的坐标形式,再运用向量的数量积公式进行推证:
解:(1)由题意
,焦点
,
当直线
过椭圆的右焦点
时,则直线
的方程为
,即
,
联立
,解得
或
(舍),即
.
连
,则直线
,即
,
而
,
.
故
.
(2)解:法一:①设
,且
,则直线
的斜率为
,
则直线
的方程为
,
联立
化简得
,
解得
,
所以
,
,
所以
为定值.
②由①知,
,
,
所以
,
令![]()
故
,
因为
在
上单调递增,
所以
,即
的取值范围为
.
解法二:①设点
,则直线
的方程为
,
令
,得
.
所以
,
所以
(定值).
②由①知,
,
,
所以,![]()
.
令
,则
,
因为
在
上单调递减,
所以
,即
的取值范围为
.
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形
为平行四边形,
,
平面
,
,
,
,且
是
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的大小;
(Ⅲ)在线段
上是否存在一点
,使得
与
所成的角为
? 若存在,求出
的长度;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系
中,已知椭圆
:
(
),
,
,
,
是椭圆上的四个动点,且
,
,线段
与
交于椭圆
内一点
.当点
的坐标为
,且
,
分别为椭圆
的上顶点和右顶点重合时,四边形
的面积为4.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)证明:当点
,
,
,
在椭圆上运动时,
(
)是定值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为:
(
为参数,
),以
为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)当
时,写出直线
的普通方程和曲线
的直角坐标方程;
(2)若点
,设曲线
与直线
交于点
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T.其范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵,晚高峰时段(T≥2),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的部分直方图如图所示.
![]()
(1)请补全直方图,并求出轻度拥堵、中度拥堵、严重拥堵路段各有多少个?
(2)用分层抽样的方法从交通指数在[4,6),[6,8),[8,l0]的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;
(3)从(2)中抽出的6个路段中任取2个,求至少一个路段为轻度拥堵的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1的参数方程为
(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中是真命题的个数是( )
(1)垂直于同一条直线的两条直线互相平行
(2)与同一个平面夹角相等的两条直线互相平行
(3)平行于同一个平面的两条直线互相平行
(4)两条直线能确定一个平面
(5)垂直于同一个平面的两个平面平行
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com