精英家教网 > 高中数学 > 题目详情

已知二次函数f(x)的二次项系数a(a≠0),且不等式f(x)<2x的解集为(-1,2).
(1)若方程f(x)+3a=0有两个相等的实根,求f(x)的解析式;
(2)若函数f(x)的最小值不大于-3a,且函数数学公式在R上为减函数,求实数a的取值范围.

解:(1)设二次函数为f(x)=ax2+bx+c
∵f(x)<2x的解集为(-1,2).
∴-1,2是方程ax2+(b-2)x+c=0的两个根

∵方程f(x)+3a=0有两个相等的实根即
ax2+bx+c+3a=0有两个相等的实根
∴△=b2-4a(c+3a)=0②
解①②得

(2)根据题意得
∵a>0,所以f(x)的最小值为


在R上是减函数,
在R上恒成立

得到
综上所述
分析:(1)据二次不等式的解集与相应的二次方程的根的关系,判断出-1,2是方程的根,利用韦达定理列出a,b,c满足的等式;再利用二次方程有两个相等的实根,判别式等于0列出关于a,b,c的另一个等式,解方程组求出f(x)的解析式.
(2)通过对二次函数配方求出其最小值,列出不等式求出a的范围;求出G(x)的导函数,令其大于等于0恒成立,求出a的范围.
点评:解决二次不等式的解集问题常转化为二次方程的根问题,利用韦达定理得到系数间的关系;解决函数在某个区间上的单调性已知,求参数的范围问题,常求出函数的导函数,令导函数大于等于0(或小于等于0)恒成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案