精英家教网 > 高中数学 > 题目详情
已知椭圆的离心率为,其左、右焦点分别为F1、F2,点P是坐标平面内一点,且(O为坐标原点).
(1)求椭圆C的方程;
(2)过点且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标和△MAB面积的最大值;若不存在,说明理由.
【答案】分析:(1)设P(x,y),F1(-c,0),F2(c,0),由;由.所以c=1,由此能求出椭圆的方程.
(2)动直线l的方程为,由.设A(x1,y1),B(x2,y2).则.由此入手能求出当且仅当时,△MAB面积的最大值.
解答:解:(1)设P(x,y),F1(-c,0),F2(c,0),
则由


所以c=1…(2分)
又因为,所以a2=2,b2=1.…(3分)
因此所求椭圆的方程为.…(4分)
(2)动直线l的方程为


设A(x1,y1),B(x2,y2).
.…(6分)
假设在y上存在定点M(0,m),满足题设,

=
=
=
=
由假设得对于任意的恒成立,

解得m=1.
故在y轴上存在定点M(0,1),
使得以AB为直径的圆恒过这个点…(10分)
这时,点M到AB的距离


设2k2+1=t,


所以
当且仅当时,上式等号成立.
因此,△MAB面积的最大值是.…(13分)
点评:通过几何量的转化考查用待定系数法求曲线方程的能力,通过直线与圆锥曲线的位置关系处理,考查学生的运算能力.通过向量与几何问题的综合,考查学生分析转化问题的能力,探究研究问题的能力,并体现了合理消元,设而不解的代数变形的思想.本题有一定的探索性.综合性强,难度大,易出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的离心率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的一个交点,若e|PF2|=|PF1|,则e的值为(  )
A、
1
2
B、
2
2
C、
3
3
D、以上均不对

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的离心率为
1
2
,焦点是(-3,0),(3,0),则椭圆方程为(  )
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在由圆O:x2+y2=1和椭圆C:
x2
a2
+y2
=1(a>1)构成的“眼形”结构中,已知椭圆的离心率为
6
3
,直线l与圆O相切于点M,与椭圆C相交于两点A,B.
(1)求椭圆C的方程;
(2)是否存在直线l,使得
OA
OB
=
1
2
OM
2
,若存在,求此时直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知椭圆的离心率为
2
2
,准线方程为x=±8,求这个椭圆的标准方程;
(2)假设你家订了一份报纸,送报人可能在早上6:30-7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00-8:00之间,请你求出父亲在离开家前能得到报纸(称为事件A)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右顶点,M是椭圆上异于A,B的任意一点,已知椭圆的离心率为e,右准线l的方程为x=m.
(1)若e=
1
2
,m=4,求椭圆C的方程;
(2)设直线AM交l于点P,以MP为直径的圆交MB于Q,若直线PQ恰过原点,求e.

查看答案和解析>>

同步练习册答案