【题目】已知椭圆![]()
,点
、
、
均在椭圆
上,
,点
与点
关于原点对称,
的最大值为
.
(1)求椭圆
的标准方程;
(2)若
,求
外接圆的半径
的值.
科目:高中数学 来源: 题型:
【题目】2019新型冠状病译(2019-nCoV)于2020年1月12日被世界卫生组织命名.冠状病毒是一个大型病毒家族,可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.某医院对病患及家属是否带口罩进行了调查,统计人数得到如下列联表:
戴口罩 | 未戴口罩 | 总计 | |
未感染 | 30 | 10 | 40 |
感染 | 4 | 6 | 10 |
总计 | 34 | 16 | 50 |
(1)根据上表,判断是否有95%的把握认为未感染与戴口罩有关;
(2)在上述感染者中,用分层抽样的方法抽取5人,再在这5人中随机抽取2人,求这2人都未戴口罩的概率.
参考公式:
,其中
.
参考数据:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=
,∠BAD=90°.
(Ⅰ)求证:AD⊥BC;
(Ⅱ)求异面直线BC与MD所成角的余弦值;
(Ⅲ)求直线CD与平面ABD所成角的正弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
是抛物线
上一点,点
为抛物线
的焦点,
.
(1)求直线
的方程;
(2)若直线
过点
,与抛物线相交于
两点,且曲线
在点
与点
处的切线分别为
,直线
相交于点
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
是圆
上任意一点,过点
作
轴于点
,延长
到点
,使
.
(1)求点M的轨迹E的方程;
(2)过点
作圆O的切线l,交(1)中曲线E于
两点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,河的两岸分别有生活小区
和
,其中
,
三点共线,
与
的延长线交于点
,测得
,
,
,
,
,若以
所在直线分别为
轴建立平面直角坐标系
则河岸
可看成是曲线
(其中
是常数)的一部分,河岸
可看成是直线
(其中
为常数)的一部分.
![]()
(1)求
的值.
(2)现准备建一座桥
,其中
分别在
上,且
,
的横坐标为
.写出桥
的长
关于
的函数关系式
,并标明定义域;当
为何值时,
取到最小值?最小值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com