【题目】已知三棱台
的下底面
是边长为2的正三角形,上地面
是边长为1的正三角形.
在下底面的射影为
的重心,且
.
![]()
(1)证明:
平面
;
(2)求直线
与平面
所成角的正弦值.
【答案】(1)证明见解析;(2)
.
【解析】
(1)利用线面垂直的判定定理及性质证明,或者建立空间直角坐标系,利用向量的数量积为0证明;
(2)运用综合法求直线与平面所成的角应先确定该平面的垂线,即可求解,或者建立空间直角坐标系,利用空间向量的夹角公式求解.
解法一:(1)证明:记
的重心为
,连接
并延长交
于点
.
因为底面
为正三角形,则
,
又点
在底面上的射影为
,
所以
平面
,则
,
因为
,所以
平面
,
又
平面
,所以
.
又
,且
,
所以
平面
,
因此,
平面
.
![]()
(2)由于
为棱台,
设三侧棱延长交于一点
.
因为
,
则
,
分别为棱
,
的中点.
又
为正
的重心,
则
,
,
.
因为
平面
,
则
,
故在
中,
,
由三角形相似,得
,
.
取
的中点
,连接
,
,
则
∥
,且
,
故
平面
,
即
即为直线
与平面
所成的角.
又
,
且
,
,
,
所以
,
,
又
,所以
,
即
,
所以
,
即直线
与平面
所成角的正弦值为
.
解法二:以重心
为原点,直线
,
分别为
,
轴建立如图所示的空间直角坐标系.
![]()
则
,
,
,
设
,则
,
,
.
(1)证明:由
,
即
得
,
即
,
故
,
又
,
所以
平面
.
(2)由
,
得
,
所以
.
设平面
的法向量为
,
因为
,
,
所以有
,
令
,则
,所以
.
设直线
与平面
所成的角为
,
则
.
科目:高中数学 来源: 题型:
【题目】“2019曹娥江国际马拉松”在上虞举行,现要选派5名志愿者服务于
四个不同的运动员救助点,每个救助点至少分配1人,若志愿者甲要求不到A救助点,则不同的分派方案有________种.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知0<m<2,动点M到两定点F1(﹣m,0),F2(m,0)的距离之和为4,设点M的轨迹为曲线C,若曲线C过点
.
(1)求m的值以及曲线C的方程;
(2)过定点
且斜率不为零的直线l与曲线C交于A,B两点.证明:以AB为直径的圆过曲线C的右顶点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在等腰梯形
中,
∥
,
,直角梯形
所在的平面垂直于平面
,且
,
.
![]()
(1)证明:平面
平面
;
(2)点
在线段
上,试确定点
的位置,使平面
与平面
所成的二面角的余弦值为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥
的底面ABCD是边长为a的菱形,
面ABCD,
,E,F分别是CD,PC的中点.
![]()
(1)求证:平面
平面PAB;
(2)M是PB上的动点,EM与平面PAB所成的最大角为
,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个口袋中装有大小相同的5个小球,编号分别为0,1,2,3,4,现从中随机地摸一个球,记下编号后放回,连摸3次,若摸出的3个小球的最大编号与最小编号之差为2,则共有________种不同的摸球方法(用数字作答).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
是定义在R上的奇函数,当
时,
,给出下列命题:
①函数
有2个零点;
②
的解集为
;
③
,
,都有
;
④当
时,
,则
.
其中真命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的两个顶点坐标是
,
,
的周长为
,
是坐标原点,点
满足
.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)设不过原点的直线
与曲线
交于
两点,若直线
的斜率依次成等比数列,求
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com