【题目】已知
的三个顶点都在椭圆
上,且点
在第一象限,点
为
的中点,
.
![]()
(1)若
,求点
的坐标;
(2)
的面积是否是常数,若是,请求出;若不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】如图,△ABC中,AB⊥BC,∠ACB=60°,D为AC中点,△ABD沿BD翻折过程中,直线AB与直线BC所成的最大角、最小角分别记为α1,β1,直线AD与直线BC所成最大角、最小角分别记为α2,β2,则有( )
![]()
A.α1<α2,β1≤β2B.α1<α2,β1>β2
C.α1≥α2,β1≤β2D.α1≥α2,β1>β2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱台
的下底面
是边长为2的正三角形,上地面
是边长为1的正三角形.
在下底面的射影为
的重心,且
.
![]()
(1)证明:
平面
;
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
的参数方程为
(
为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
,设曲线
与曲线
的公共弦所在直线为l.
(1)在直角坐标系下,求曲线
与曲线
的普通方程;
(2)若以坐标原点为中心,直线l顺时针方向旋转
后与曲线
、曲线
分别在第一象限交于A、B两点,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系
中,已知椭圆
:
的离心率为
,
为椭圆
上位于第一象限上的点,
为椭圆
的上顶点,直线
与
轴相交于点
,
,
的面积为6.
![]()
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若直线
与椭圆
有且只有一个公共点,设椭圆
的两焦点到直线
的距离分别是
,
,试问
是否为定值?若是,求出其值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C:
的离心率为
,其右焦点到椭圆C外一点
的距离为
,不过原点O的直线l与椭圆C相交于A,B两点,且线段AB的长度为2.
1
求椭圆C的方程;
2
求
面积S的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1(﹣c,0),F2(c,0)分別为双曲线
1(a>0,b>0)的左、右焦点,以坐标原点O为圆心,c为半径的圆与双曲线在第二象限交于点P,若tan∠PF1F2
,则该双曲线的离心率为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,其中
是实常数.
(1)若
,求
的取值范围;
(2)若
,求证:函数
的零点有且仅有一个;
(3)若
,设函数
的反函数为
,若
是公差
的等差数列且均在函数
的值域中,求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com