【题目】某网络平台从购买该平台某课程的客户中,随机抽取了100位客户的数据,并将这100个数据按学时数,客户性别等进行统计,整理得到如表:
学时数 |
|
|
|
|
|
|
|
男性 | 18 | 12 | 9 | 9 | 6 | 4 | 2 |
女性 | 2 | 4 | 8 | 2 | 7 | 13 | 4 |
(1)根据上表估计男性客户购买该课程学时数的平均值(同一组中的数据用该组区间的中点值作代表,结果保留小数点后两位);
(2)从这100位客户中,对购买该课程学时数在20以下的女性客户按照分层抽样的方式随机抽取7人,再从这7人中随机抽取2人,求这2人购买的学时数都不低于15的概率.
(3)将购买该课程达到25学时及以上者视为“十分爱好该课程者”,25学时以下者视,为“非十分爱好该课程者”.请根据已知条件完成以下
列联表,并判断是否有99.9%的把握认为“十分爱好该课程者”与性别有关?
非十分爱好该课程者 | 十分爱好该课程者 | 合计 | |
男性 | |||
女性 | |||
合计 | 100 |
附:
,![]()
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】(1)平均值为
.(2)
(3)见解析
【解析】
根据平均数的公式进行计算即可;
利用分层抽样的方法,利用列举法结合古典概型的概率公式进行计算即可;
完成
列联表,计算
的值,利用独立性检验的性质进行判断即可.
由题意知,在100位购买该课程的客户中,男性客户购买该课程学时数的平均值为
;
所以估计男性客户购买该课程学时数的平均值为
.
设“所抽取的2人购买的学时数都不低于15为事件A,
依题意按照分层抽样的方式分別在学时数为
,
,
的女性客户中抽取1人
设为
,2人
设为A,![]()
4人,
设为
,
,
,
,从7人中随机抽取2人所包含的基木事件为:
aA,aB,
,
,
,
,AB,
,
,
,
,
,
,
,
,
,
,
,
,
,
,共21种,
其中事件A所包含的基本事件为:
,
,
,
,
,
,共6个,
则事件A发生的概率
.
依题意得
列联表如下
非十分爱好该课程者 | 十分爱好该课程者 | 合计 | |
男性 | 48 | 12 | 60 |
女性 | 16 | 24 | 40 |
合计 | 64 | 36 | 100 |
则
.
故有
的把握认为“十分爱好该课程者”与性別有关.
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心为坐标原点,焦点在坐标轴上,且经过点M(4,1),N(2,2).
(1)求椭圆C的方程;
(2)若斜率为1的直线与椭圆C交于不同的两点,且点M到直线l的距离为
,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点E到点A(2,0)与点B(-2,0)的直线斜率之积为-
,点E的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点D(l,0)作直线l与曲线C交于P,Q两点,且
=-
.求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是两条异面直线,直线
与
都垂直,则下列说法正确的是( )
A. 若
平面
,则![]()
B. 若
平面
,则
,![]()
C. 存在平面
,使得
,
,![]()
D. 存在平面
,使得
,
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(为参数,倾斜角),曲线C的参数方程为
(
为参数,
),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系。
(1)写出曲线
的普通方程和直线的极坐标方程;
(2)若直线与曲线
恰有一个公共点
,求点
的极坐标。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
为抛物线
的焦点,过点
的直线
与抛物线
相交于
、
两点.
(1)若
,求此时直线
的方程;
(2)若与直线
垂直的直线
过点
,且与抛物线
相交于点
、
,设线段
、
的中点分别为
、
,如图,求证:直线
过定点;
![]()
(3)设抛物线
上的点
、
在其准线上的射影分别为
、
,若△
的面积是△
的面积的两倍,如图,求线段
中点的轨迹方程.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com