【题目】设实数
,椭圆
的右焦点为F,过F且斜率为k的直线交D于P、Q两点,若线段PQ的中点为N,点O是坐标原点,直线ON交直线
于点M.
若点P的横坐标为1,求点Q的横坐标;
求证:
;
求
的最大值.
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为
为参数), 椭圆C的参数方程为
为参数)。在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点A的极坐标为(2, ![]()
(1)求椭圆C的直角坐标方程和点A在直角坐标系下的坐标
(2)直线l与椭圆C交于P,Q两点,求△APQ的面积
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】上海地铁四通八达,给市民出行带来便利,已知某条线路运行时,地铁的发车时间间隔
(单位:分字)满足:
,
,经测算,地铁载客量
与发车时间间隔
满足
,其中
.
(1)请你说明
的实际意义;
(2)若该线路每分钟的净收益为
(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?并求最大净收益.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知在平面直角坐标系
中,圆
的参数方程为
(
为参数).以原点
为极点,
轴的非负半轴为极轴,取相同的单位长度建立极坐标系.
(I)求圆
的普通方程及其极坐标方程;
(II)设直线
的极坐标方程为
,射线
与圆
的交点为
,与直线
的交点为Q,求线段PQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)
为曲线
上的动点,点
在线段
上,且满足
,求点
的轨迹
的直角坐标方程;
(2)设点
的极坐标为
,点
在曲线
上,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知在平面直角坐标系
中,圆
的参数方程为
(
为参数).以原点
为极点,
轴的非负半轴为极轴,取相同的单位长度建立极坐标系.
(I)求圆
的普通方程及其极坐标方程;
(II)设直线
的极坐标方程为
,射线
与圆
的交点为
,与直线
的交点为Q,求线段PQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
、
、
是三条不同的直线,
、
、
是三个不同的平面,给出下列四个命题:
①若
,
,
,
,
,则
;
②若
,
,则
;
③若
,
是两条异面直线,
,
,
,
且
,则
;
④若
,
,
,
,
,则
.
其中正确命题的序号是( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com