【题目】公元五世纪,数学家祖冲之估计圆周率
的值的范围是:
,为纪念数学家祖冲之在圆周率研究上的成就,某教师在讲授概率内容时要求学生从小数点后的6位数字1,4,1,5,9,2中随机选取两个数字做为小数点后的前两位(整数部分3不变),那么得到的数字大于3.14的概率为( )
A.
B.
C.
D.![]()
科目:高中数学 来源: 题型:
【题目】设
(
,
).
(1)若展开式中第5项与第7项的系数之比为3∶8,求k的值;
(2)设
(
),且各项系数
,
,
,…,
互不相同.现把这
个不同系数随机排成一个三角形数阵:第1列1个数,第2列2个数,…,第n列n个数.设
是第i列中的最小数,其中
,且i,
.记
的概率为
.求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在直角梯形
中,
,
,
,
,
,点E在
上,且
,将三角形
沿线段
折起到
的位置,
(如图2).
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)在线段
上存在点F,满足
,求平面
与平面
所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,圆
的方程为
,以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求圆
的极坐标方程与直线
的直角坐标方程;
(2)设直线
与圆
相交于
,
两点,求圆
在
,
处两条切线的交点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年新型冠状病毒肺炎蔓延全国,作为主要战场的武汉,仅用了十余天就建成了“小汤山”模式的火神山医院和雷神山医院,再次体现了中国速度.随着疫情发展,某地也需要参照“小汤山”模式建设临时医院,其占地是出一个正方形和四个以正方形的边为底边、腰长为400m的等腰三角形组成的图形(如图所示),为使占地面积最大,则等腰三角形的底角为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱柱
的侧棱和底面垂直,且所有顶点都在球O的表面上,侧面
的面积为
.给出下列四个结论:
①若
的中点为E,则
平面
;
②若三棱柱
的体积为
,则
到平面
的距离为3;
③若
,
,则球O的表面积为
;
④若
,则球O体积的最小值为
.
当则所有正确结论的序号是( )
A.①④B.②③C.①②③D.①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正四棱锥
中,已知异面直线
与
所成的角为
,给出下面三个命题:
:若
,则此四棱锥的侧面积为
;
:若
分别为
的中点,则
平面
;
:若
都在球
的表面上,则球
的表面积是四边形
面积的
倍.
在下列命题中,为真命题的是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com