【题目】下列说法正确的是( )
A.“
”是“点
到直线
的距离为3”的充要条件
B.直线
的倾斜角的取值范围为![]()
C.直线
与直线
平行,且与圆
相切
D.离心率为
的双曲线的渐近线方程为![]()
【答案】BC
【解析】
根据点到直线的距离公式判断选项A错误;根据直线斜率的定义及正切函数的值域问题判断选项B正确;根据两直线平行的判定及直线与圆相切的判定,可判断选项C正确;根据双曲线渐近线的定义可判断选项D错误.
选项A:由点
到直线
的距离为3,
可得:
,解得
或
,
“
”是“点
到直线
的距离为3”的充分不必要条件,
故选项A错误;
选项B:直线
的斜率
,
设直线的倾斜角为
,则
或
,
,故选项B正确;
选项C:直线
可化为
,
其与直线
平行,
圆
的圆心
到直线
的距离为:
,
则直线
与圆
相切,故选项C正确;
选项D:离心率为
,则
若焦点在x轴,则双曲线的渐近线方程为
,
若焦点在y轴,则双曲线的渐近线方程为
,
故选项D错误.
故选:BC.
科目:高中数学 来源: 题型:
【题目】在
中,
,
,沿中位线DE折起后,点A对应的位置为点P,
.
![]()
(1)求证:平面
平面DBCE;
(2)求证:平面
平面PCE;
(3)求直线BP与平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自2017年7月27日上映以来,《战狼2》的票房一路高歌猛进,并不断刷新华语电影票房纪录.继8月25日官方宣布冲破53亿票房之后,根据外媒Worldwide Box Office给出的2017年周末全球票房最新排名,《战狼2》以8.151亿美元(约54.18亿元)的成绩成功杀入前五.通过收集并整理了《战狼2》上映前两周的票房(单位:亿元)数据,绘制出下面的条形图.根据该条形图,下列结论错误的是( )
![]()
A.在《战狼2》上映前两周中,前四天票房逐日递增
B.在《战狼2》上映前两周中,日票房超过2亿元的共有12天
C.在《战狼2》上映前两周中,8月5日,8月6日达到了票房的高峰期
D.在《战狼2》上映前两周中,前五日的票房平均数高于后五日的票房平均数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a是实数,关于z的方程(z2-2z+5)(z2+2az+1)=0有4个互不相等的根,它们在复平面上对应的4个点共圆,则实数a的取值范围是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭图
:
的右顶点与抛物线
:
的焦点重合,椭圆
的离心率为
,过椭圆
的右焦点
且垂直于
轴的直线截抛物线所得的弦长为
.
(1)求椭圆
和抛物线
的方程;
(2)过点
的直线
与椭圆
交于
,
两点,点
关于
轴的对称点为
.当直线
绕点
旋转时,直线
是否经过一定点?请判断并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左,右焦点分别为
,直线
与椭圆
相交于
两点;当直线
经过椭圆
的下顶点
和右焦点
时,
的周长为
,且
与椭圆
的另一个交点的横坐标为![]()
(1)求椭圆
的方程;
(2)点
为
内一点,
为坐标原点,满足
,若点
恰好在圆
上,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在①
,②
,③
这三个条件中任选一个,补充在下面问题中,若问题中的正整数k存在,求k的值;若k不存在,请说明理由.
设
为等差数列
的前n项和,
是等比数列,______,
,
,
.是否存在k,使得
且
?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“割圆术”是我国古代计算圆周率
的一种方法.在公元
年左右,由魏晋时期的数学家刘徽发明.其原理就是利用圆内接正多边形的面积逐步逼近圆的面积,进而求
.当时刘微就是利用这种方法,把
的近似值计算到
和
之间,这是当时世界上对圆周率
的计算最精确的数据.这种方法的可贵之处就是利用已知的、可求的来逼近未知的、要求的,用有限的来逼近无穷的.为此,刘微把它概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.这种方法极其重要,对后世产生了巨大影响,在欧洲,这种方法后来就演变为现在的微积分.根据“割圆术”,若用正二十四边形来估算圆周率
,则
的近似值是( )(精确到
)(参考数据
)
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com