【题目】已知椭图
:
的右顶点与抛物线
:
的焦点重合,椭圆
的离心率为
,过椭圆
的右焦点
且垂直于
轴的直线截抛物线所得的弦长为
.
(1)求椭圆
和抛物线
的方程;
(2)过点
的直线
与椭圆
交于
,
两点,点
关于
轴的对称点为
.当直线
绕点
旋转时,直线
是否经过一定点?请判断并证明你的结论.
【答案】(1)
,
;(2)是,证明见解析.
【解析】
(1)利用椭圆的顶点与抛物线的焦点坐标相同,椭圆的离心率,列出方程组,求出
,
,即可得到椭圆方程抛物线方程;
(2)把直线方程与椭圆方程联立可得根与系数的关系,设
,
,
,
,
,
,求得直线
的方程,化简整理,由直线恒过定点的求法,可得所求定点.
解:(1)设椭圆
的半焦距为
,依题意,可得
,则
:
,
代入
,得
,即
,所以
,
则有
,
.
所以椭圆
的方程为
,抛物线
的方程为
.
(2)依题意,当直线
的斜率不为0时,设其方程为
,
联立
,得
,
设
,
,则
,由
,解得
或
,
且
,
,
根据椭圆的对称性可知,若直线
过定点,此定点必在
轴上,设此定点为
,
因斜率
,得
,即
,
即
,即
,
即
,得
,
由
的任意性可知
.
当直线
的斜率为0时,直线
的方程即为
,也经过点
,
所以当
或
时,直线
恒过一定点
.
科目:高中数学 来源: 题型:
【题目】关于函数
,下列判断正确的是( )
A.
有最大值和最小值
B.
的图象的对称中心为
(
)
C.
在
上存在单调递减区间
D.
的图象可由
的图象向左平移
个单位而得
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知鲜切花
的质量等级按照花枝长度
进行划分,划分标准如下表所示.
花枝长度 |
|
|
|
鲜花等级 | 三级 | 二级 | 一级 |
某鲜切花加工企业分别从甲乙两个种植基地购进鲜切花
,现从两个种植基地购进的鲜切花
中分别随机抽取30个样品,测量花枝长度并进行等级评定,所抽取样品数据如图所示.
![]()
(1)根据茎叶图比较两个种植基地鲜切花
的花枝长度的平均值及分散程度(不要求计算具体值,给出结论即可);
(2)若从等级为三级的样品中随机选取2个进行新产品试加工,求选取的2个全部来自乙种植基地的概率;
(3)根据该加工企业的加工和销售记录,了解到来自乙种植基地的鲜切花
的加工产品的单件利润为4元;来自乙种植基地的鲜切花
的加工产品的单件成本为10元,销售率(某等级产品的销量与产量的比值)及单价如下表所示.
三级花加工产品 | 二级花加工产品 | 一级花加工产品 | |
销售率 |
|
|
|
单价/(元/件) | 12 | 16 | 20 |
由于鲜切花
加工产品的保鲜特点,未售出的产品均可按原售价的50%处理完毕.用样本估计总体,如果仅从单件产品的利润的角度考虑,该鲜切花加工企业应该从哪个种植基地购进鲜切花
?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
年
月
日,国务院总理李克强在做政府工作报告时说,打好精准脱贫攻坚战.江西省贫困县脱贫摘帽取得突破性进展:
年,稳定实现扶贫对象“两不愁、三保障”,贫困县全部退出.围绕这个目标,江西正着力加快增收步伐,提高救助水平,改善生活条件,打好产业扶贫、保障扶贫、安居扶贫三场攻坚战.为响应国家政策,老张自力更生开了一间小型杂货店.据长期统计分析,老张的杂货店中某货物每天的需求量
在
与
之间,日需求量
(件)的频率
分布如下表所示:
![]()
己知其成本为每件
元,售价为每件
元若供大于求,则每件需降价处理,处理价每件
元.
(1)设每天的进货量为
,视日需求量
的频率为概率
,求在每天进货量为
的条件下,日销售量
的期望值
(用
表示);
(2)在(1)的条件下,写出
和
的关系式,并判断
为何值时,日利润的均值最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.“
”是“点
到直线
的距离为3”的充要条件
B.直线
的倾斜角的取值范围为![]()
C.直线
与直线
平行,且与圆
相切
D.离心率为
的双曲线的渐近线方程为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问200名性别不同的大学生是否爱好踢毽子运动,计算得到统计量
的观测值
,参照附表,得到的正确结论是( )
| 0.10 | 0.05 | 0.025 |
| 2.706 | 3.841 | 5.024 |
A.有97.5%以上的把握认为“爱好该项运动与性别有关”
B.有97.5%以上的把握认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在
上的函数
,若满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界
(1)设
,判断
在
上是否是有界函数,若是,说明理由,并写出
所有上界的值的集合;若不是,也请说明理由.
(2)若函数
在
上是以
为上界的有界函数,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】蜂巢是由工蜂分泌蜂蜡建成的从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是
,这样的设计含有深刻的数学原理、我国著名数学家华罗庚曾专门研究蜂巢的结构著有《谈谈与蜂房结构有关的数学问题》.用数学的眼光去看蜂巢的结构,如图,在六棱柱
的三个顶点A,C,E处分别用平面BFM,平面BDO,平面DFN截掉三个相等的三棱锥
,
,
,平面BFM,平面BDO,平面DFN交于点P,就形成了蜂巢的结构.如图,设平面PBOD与正六边形底面所成的二面角的大小为
,则有:( )
A.
B.![]()
C.
D.以上都不对
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com