【题目】已知点
为椭圆
上一点,其中
为椭圆
的离心率,椭圆
的长轴长是短轴长的两倍.
(1)求椭圆
的方程;
(2)已知
,
(均不与点
重合)是该椭圆上关于原点对称的两点,当
的面积最大时,求直线
的方程.
【答案】(1)
(2)
.
【解析】
(1)将
代入
,得
,椭圆
的长轴长是短轴长的两倍,可得
,联立方程,即可求得答案;
(2)当直线
的斜率不存在时,直线
的方程为
,
的面积为1. 当直线
的斜率存在时,设其方程为
,代入
,求得
,根据点到直线距离公式求得点
到直线
的距离
,结合均值不等式,即可求得答案.
(1)将
代入
,
得
,即
,
从而得
.
又椭圆
的长轴长是短轴长的两倍,
![]()
,
由
,得
,
故椭圆
的方程为
.
(2)①当直线
的斜率不存在时,直线
的方程为
,
易得
的面积为1.
②当直线
的斜率存在时,设其方程为
,代入![]()
并化简得
,得
,
![]()
.
由(1)易得
,所以
,
点
到直线
的距离
.
![]()
![]()
![]()
![]()
.
记
,则有
,
当且仅当
,即
时取等号.
故当
的面积最大时,直线
的方程为
.
科目:高中数学 来源: 题型:
【题目】从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某科研小组为了研究一种治疗新冠肺炎患者的新药的效果,选50名患者服药一段时间后,记录了这些患者的生理指标
和
的数据,并统计得到如下的
列联表(不完整):
|
| 合计 | |
| 12 | 36 | |
| 7 | ||
合计 |
其中在生理指标
的人中,设
组为生理指标
的人,
组为生理指标
的人,他们服用这种药物后的康复时间(单位:天)记录如下:
组:10,11,12,13,14,15,16
组:12,13,15,16,17,14,25
(Ⅰ)填写上表,并判断是否有95%的把握认为患者的两项生理指标
和
有关系;
(Ⅱ)从
,
两组随机各选1人,
组选出的人记为甲,
组选出的人记为乙,求甲的康复时间比乙的康复时间长的概率.
附:
,其中
.
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为坐标原点,
,
,
,若
.
⑴ 求函数
的最小正周期和单调递增区间;
⑵ 将函数
的图象上各点的横坐标伸长为原来的
倍(纵坐标不变),再将得到的图象向左平移
个单位,得到函数
的图象,求函数
在
上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均为正数的数列
的前n项和为
,
,且对任意n
,
恒成立.
(1)求证:数列
是等差数列,并求数列
的通项公式;
(2)设
,已知
,
,
(2<i<j)成等差数列,求正整数i,j.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)已知过原点的动直线
与圆
相交于不同的两点
,
.
(1)求圆
的圆心坐标;
(2)求线段
的中点
的轨迹
的方程;
(3)是否存在实数
,使得直线
与曲线
只有一个交点?若存在,求出
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为
,AB=2,AC=1,∠BAC=60°,则此球的表面积等于( )
A.8πB.9πC.10πD.11π
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com