【题目】杨辉三角,是二项式系数在三角形中的一种几何排列.中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现了杨辉三角.在欧洲,帕斯卡在1654年也发现了这一规律,所以这个表又叫做帕斯卡三角形.杨辉三角是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合.
第0行 | 1 |
第1行 | 1 1 |
第2行 | 1 2 1 |
第3行 | 1 3 3 1 |
第4行 | 1 4 6 4 1 |
第5行 | 1 5 10 10 5 1 |
第6行 | 1 6 15 20 15 6 1 |
(1)记杨辉三角的前n行所有数之和为
,求
的通项公式;
(2)在杨辉三角中是否存在某一行,且该行中三个相邻的数之比为
?若存在,试求出是第几行;若不存在,请说明理由;
(3)已知n,r为正整数,且
.求证:任何四个相邻的组合数
,
,
,
不能构成等差数列.
【答案】(1)
(2)存在;第62行(3)证明见解析
【解析】
(1)由二项式定理的性质,杨辉三角第
行的n个数的和为:
,然后求出
即可
(2)由方程
,
解出即可
(3)若有n,r(
),使得
,
,
,
成等差数列,则由等差中项和组合数的知识可得出
,然后可得
,这与
,
,
,
成等差数列相矛盾.
(1)由二项式定理的性质,杨辉三角第
行的n个数的和为:
,
∴
.
(2)杨辉三角形的第n行由二项式系数
,
,1,2,…,n组成.
如果第n行中有
,
,
那么
,
,
解这个联立方程组,得
,
.
即第62行有三个相邻的数
,
,
的比为
.
(3)若有n,r(
),使得
,
,
,
成等差数列,
则
,
,
即
,
.
所以有
,
,
经整理得到
,
.
两式相减可得![]()
而由二项式系数的性质可知
,
这与
,
,
,
成等差数列矛盾,
所以原命题得证.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
(
为参数),以原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的方程为
,定点
,点
是曲线
上的动点,
为
的中点.
(1)求点
的轨迹
的直角坐标方程;
(2)已知直线
与
轴的交点为
,与曲线
的交点为
,若
的中点为
,求
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长度为
的线段
的两个端点
分别在
轴和
轴上运动,动点
满足
,设动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
,且斜率不为零的直线
与曲线
交于两点
,在
轴上是否存在定点
,使得直线
与
的斜率之积为常数?若存在,求出定点
的坐标以及此常数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生想在物理、化学、生物、政治、历史、地理、技术这七门课程中选三门作为选考科目,下列说法错误的是( )
A.若任意选择三门课程,选法总数为![]()
B.若物理和化学至少选一门,选法总数为![]()
C.若物理和历史不能同时选,选法总数为![]()
D.若物理和化学至少选一门,且物理和历史不能同时选,选法总数为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,且椭圆上存在一点
,满足
.
(1)求椭圆
的标准方程;
(2)过椭圆
右焦点
的直线
与椭圆
交于不同的两点
,求
的内切圆的半径的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线E:
-
=1(a>0,b>0)的右顶点为A,O为坐标原点,M为OA的中点,若以AM为直径的圆与E的渐近线相切,则双曲线E的离心率等于( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com