精英家教网 > 高中数学 > 题目详情

【题目】在脱贫攻坚中,某市教育局定点帮扶前进村户贫困户.驻村工作队对这户村民的贫困程度以及家庭平均受教育程度进行了调査,并将该村贫困户按贫困程度分为“绝对贫困户”与“相对贫困户”,同时按家庭平均受教育程度分为“家庭平均受教育年限年”与“家庭平均受教育年限年”,具体调査结果如下表所示:

平均受教育年限

平均受教育年限

总计

绝对贫困户

10

40

50

相对贫困户

20

30

50

总计

30

70

100

1)为了参加扶贫办公室举办的贫困户“谈心谈话”活动,现通过分层抽样从“家庭平均受教育年限年”的户贫困户中任意抽取户,再从所抽取的户中随机抽取户参加“谈心谈话”活动,求至少有户是绝对贫困户的概率;

2)根据上述表格判断:是否有的把握认为贫困程度与家庭平均受教育程度有关?

参考公式:

参考数据:

0.050

0.010

0.005

0.001

3.841

6.635

7.879

10.828

【答案】12)有95%的把握认为贫困程度与家庭平均受教育程度有关

【解析】

1)通过分层抽样,相对贫困户户,记为ABCD,绝对贫困户2户,记为EF,列出所有情况,统计满足条件的情况,得到概率;

2)计算,得到答案.

1)通过分层抽样,相对贫困户户,记为ABCD,绝对贫困户2户,记为EF

从其中选2户参加谈心谈话活动的所有组合为:ABACADAEAFBCBDBEBFCDCECFDEDFEF15种,至少有一户是绝对贫困户有9种,

至少有一户是绝对贫困户的概率为户.

2,由参考数据可知.

所以有95%的把握认为贫困程度与家庭平均受教育程度有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为2,离心率为.

1)求椭圆的标准方程;

2)过点且不过点的直线与椭圆交于,两点,直线与直线交于点.

i)若轴,求直线的斜率;

ii)判断直线与直线的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】垃圾种类可分为可回收垃圾,干垃圾,湿垃圾,有害垃圾,为调查中学生对垃圾分类的了解程度某调查小组随机抽取了某市的100名高中生,请他们指出生活中若干项常见垃圾的种类,把能准确分类不少于3项的称为比较了解少于三项的称为不太了解调查结果如下:

0

1

2

3

4

5

5项以上

男生(人)

1

10

17

14

14

10

4

女生(人)

0

8

10

6

3

2

1

1)完成如下列联表并判断是否有95%的把握认为了解垃圾分类与性别有关?

比较了解

不太了解

合计

男生

__________

__________

__________

女生

__________

__________

__________

合计

__________

__________

__________

2)从能准确分类不少于3项的高中生中,按照男、女生采用分层抽样的方法抽取9人的样本.

i)求抽取的女生和男生的人数;

ii)从9人的样本中随机抽取两人,求男生女生都有被抽到的概率.

参考数据:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,直线l的极坐标方程为ρcosθ=4,曲线C的极坐标方程为ρ=2cosθ+2sinθ,以极点为坐标原点O,极轴为x轴的正半轴建立直角坐标系,射线l':y=kx(x≥0,0<k<1)与曲线C交于OM两点.

Ⅰ)写出直线l的直角坐标方程以及曲线C的参数方程;

Ⅱ)若射线l与直线l交于点N,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足.求证:当时,

)当时,有

)当时,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:

2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为的椭圆的上下顶点分别为,直线与椭圆相交于两点,与相交于点 .

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若,求面积的最大值;

(Ⅲ)设直线相交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某疾病有甲、乙两种类型,对甲型患者的有效治疗只能通过注射药物Y,而乙型患者可以服药物A进行有效治疗,对该疾病患者可以通过药物A的临床检验确定甲型或乙型.检验的方法是:如果患者利用药物A完成第一个疗程有效,就可以确定是乙型;否则进行第二个疗程,如果完成第二个疗程有效,也可以确定是乙型,否则确定是甲型.为了掌握这种疾病患者中甲型、乙型所占比例,随机抽取100名患者作为样本通过药物A进行临床检验,检验结果是:样本中完成第二个疗程有效的患者是完成第一个疗程有效的患者的60%,且最终确定为甲型患者的有36.

1)根据检验结果,将频率视作概率,在利用药物A完成第一个疗程无效的患者中仼选3人,求其中甲型患者恰为2人的概率;

2)该疾病的患者通过治疗,使血浆中某物质t的浓度降低到或更低时,就认为已经达到治愈指标.为了确定药物Y对甲型患者的疗效,需了解疗程次数x(单位:次)对患者血浆中t的浓度(单位:)的影响.在甲型患者中抽取一个有代表性的样本,利用药物Y进行5个疗程,每个疗程完成后对每个个体抽取相同容量的血浆进行分析,并对疗程数和每个疗程后样本血浆中t的平均浓度的数据作了初步处理,得到下面的散点图及一些统计量的值.

3

11.0

0.46

262.5

30.1

55

1.458

/span>

上表中.

①根据散点图直接判断(不必说明理由),哪一个适宜作为甲型患者血浆中t的平均浓度y关于疗程次数x的回归方程类型?并根据表中数据建立y关于x的回归方程.

②患者在享受基本医疗保险及政府专项补助后,自己需承担的费用z(单位:元)与xy的关系为.在达到治愈指标的前提下,甲型患者完成多少个疗程自己承担的费用最低?

对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中中,是边长为的等边三角形,底面为直角梯形,

1)证明:

2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案