已知
为函数
图象上一点,
为坐标原点,记直线
的斜率
.
(1)若函数
在区间![]()
上存在极值,求实数
的取值范围;
(2)当
时,不等式
恒成立,求实数
的取值范围;
(3)求证:
.
(1)
;(2)
;(3)证明过程详见解析.
解析试题分析:本题主要考查导数的应用、不等式、数列等基础知识,考查思维能力、运算能力和思维的严谨性.第一问,考查求导求极值问题;第二问,是恒成立问题,将第一问的
代入,整理表达式,得出
,构造函数
,下面的主要任务是求出函数
的最小值,所以
;第三问,是不等式的证明,先利用放缩法构造出所证不等式的形式,构造数列,利用累加法得到所证不等式的左边,右边利用裂项相消法求和,再次利用放缩法得到结论.
试题解析:(1)由题意
,
,所以
2分
当
时,
;当
时,
.
所以
在
上单调递增,在
上单调递减,故
在
处取得极大值.
因为函数
在区间
(其中
)上存在极值,
所以
,得
.即实数
的取值范围是
. 4分
(2)由
得
,令
,
则
. 6分
令
,则
,
因为
所以
,故
在
上单调递增. 8分
所以
,从而![]()
在
上单调递增, ![]()
所以实数
的取值范围是
. 10分
(3)由(2) 知
恒成立,
即
12分
令
则
, 14分
所以
,
, ,
.
将以上
个式子相加得:![]()
,
故
. 16分
考点:1.函数极值的求法;2.恒成立问题;3.求函数的最值;4.放缩法;5.裂项相消法.
科目:高中数学 来源: 题型:解答题
已知函数
满足对任意实数
都有
成立,且当
时,
,
.
(1)求
的值;
(2)判断
在
上的单调性,并证明;
(3)若对于任意给定的正实数
,总能找到一个正实数
,使得当
时,
,则称函数
在
处连续。试证明:
在
处连续.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
的图像与函数h(x)=x++2的图像关于点A(0,1)对称.
(1) 求
的解析式;
(2) 若
,且g(x)在区间[0,2]上为减函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某商场销售某种商品的经验表明,该商品每日的销售量
(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ)求
的值;
(Ⅱ)若该商品的成本为3元/千克,试确定销售价格
的值,使商场每日销售该商品所获得的利润最大.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
渔场中鱼群的最大养殖量是m吨,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留出适当的空闲量。已知鱼群的年增长量y吨和实际养殖量x吨与空闲率乘积成正比,比例系数为k(k>0).
写出y关于x的函数关系式,指出这个函数的定义域;
求鱼群年增长量的最大值;
当鱼群的年增长量达到最大值时,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知二次函数
的导函数的图像与直线
平行,且
在
处取得极小值
.设
.
(1)若曲线
上的点
到点
的距离的最小值为
,求
的值;
(2)
如何取值时,函数
存在零点,并求出零点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com