【题目】已知椭圆
:
的离心率为
,且过点
,
,
是椭圆
上异于长轴端点的两点.
(1)求椭圆
的方程;
(2)已知直线
:
,且
,垂足为
,
,垂足为
,若
,且
的面积是
面积的5倍,求
面积的最大值.
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2-4x-14y+45=0及点Q(-2,3).
(1)若点P(m,m+1)在圆C上,求直线PQ的斜率.
(2)若M是圆C上任一点,求|MQ|的取值范围.
(3)若点N(a,b)在圆C上,求
的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,点P是圆
上的任意一点,设Q为该圆的圆心,并且线段PA的垂直平分线与直线PQ交于点E.
(1)求点E的轨迹方程;
(2)已知M,N两点的坐标分别为(﹣2,0),(2,0),点T是直线x=4上的一个动点,且直线TM,TN分别交(1)中点E的轨迹于C,D两点(M,N,C,D四点互不相同),证明:直线CD恒过一定点,并求出该定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x2﹣alnx﹣(a﹣2)x.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)有两个零点x1 , x2(1)求满足条件的最小正整数a的值;
(Ⅲ)求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项都为正数的数列{an}满足a1=1,an2﹣(2an﹣1﹣1)an﹣2an﹣1=0(n≥2,n∈N*),数列{bn}满足b1=1,b1+
b2+
b3+…+
bn=bn+1﹣1(n∈N*)
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求数列{anbn}的前n项和为Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱
中,
平面
,
,
,
,
,
为
的中点.
![]()
(Ⅰ)求四棱锥
的体积;
(Ⅱ)设点
在线段
上,且直线
与平面
所成角的正弦值为
,求线段
的长度;
(Ⅲ)判断线段
上是否存在一点
,使得
?(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
sinωx﹣
cosωx(ω>0),将函数y=|f(x)|的图象向左平移
个单位长度后关于y轴对称,则当ω取最小值时,g(x)=cos(ωx+
)的单调递减区间为( )
A.[﹣
+
,
+
](k∈Z)
B.[﹣
+
,
+
](k∈Z)
C.[﹣
+
,
+
](k∈Z)
D.[﹣
+
,
+
](k∈Z)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com