【题目】如图,
为矩形
的边
上一点,且
,将
沿
折起到
,使得
.
![]()
(1)证明:平面
平面
;
(2)若
,求平面
与平面
所成的锐二面角的余弦值.
【答案】(1)证明见解析;(2)
.
【解析】
(1)取
,
的中点
,
,连接
,
,
,则
,由题意可知
,
,
,从而证明
平面
,即
根据线面垂直的判定定理证明
平面
,再利用线面垂直的性质定理证明面面垂直即可.
(2)以
为原点,
,
,
所在直线为
,
,
轴,建立如图所示的空间直角坐标系.求解平面
的法向量
,平面
的法向量
,再根据
,计算二面角余弦值,即可.
(1)取
,
的中点
,
,连接
,
,
,则![]()
![]()
,![]()
![]()
,
.
又
在矩形
中
![]()
![]()
又![]()
,
平面
,
平面![]()
![]()
平面![]()
平面![]()
![]()
![]()
又![]()
与
为梯形
的两腰,必相交,
平面
,
平面![]()
![]()
平面
,
又![]()
平面![]()
平面
平面
.
![]()
(2)∵
,![]()
∴
.
过点
作
,交
与
,则
,
,![]()
以
为坐标原点,
,
,
所在直线为
,
,
轴,建立如图所示的空间直角坐标系.
则各点坐标为
,
,
,
.
设平面
的法向量为
,则
,![]()
,即
,
,取
,则![]()
设平面
的法向量为
,则
,![]()
,即
,
,取
,则
,
![]()
![]()
即平面
与平面
所成锐二面角的余弦值为
.
![]()
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x-lnx,g(x)=x2-ax.
(1)求函数f(x)在区间[t,t+1](t>0)上的最小值m(t);
(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函数h(x)图像上任意两点,且满足
>1,求实数a的取值范围;
(3)若x∈(0,1],使f(x)≥
成立,求实数a的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的左、右焦点分别为
,
,
,
是
上的点,
的面积最大值为
,直线
与
交于
两点,且
(
为坐标原点)
(1)求椭圆
的方程;
(2)求证:
到直线
的距离为定值,并求其定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】超级病菌是一种耐药性细菌,产生超级细菌的主要原因是用于抵抗细菌侵蚀的药物越来越多,但是由于滥用抗生素的现象不断的发生,很多致病菌也对相应的抗生素产生了耐药性,更可怕的是,抗生素药物对它起不到什么作用,病人会因为感染而引起可怕的炎症,高烧、痉挛、昏迷直到最后死亡.某药物研究所为筛查某种超级细菌,需要检验血液是否为阳性,现有n(
)份血液样本,每个样本取到的可能性均等,有以下两种检验方式:
(1)逐份检验,则需要检验n次;
(2)混合检验,将其中k(
且
)份血液样本分别取样混合在一起检验,若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为
次,假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(
).
(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过2次检验就能把阳性样本全部检验出来的概率;
(2)现取其中k(
且
)份血液样本,记采用逐份检验方式,样本需要检验的总次数为
,采用混合检验方式,样本需要检验的总次数为
.
(i)试运用概率统计的知识,若
,试求p关于k的函数关系式
;
(ii)若
,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k的最大值.
参考数据:
,
,
,
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
指数是用体重公斤数除以身高米数的平方得出的数字,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当
数值大于或等于20.5时,我们说体重较重,当
数值小于20.5时,我们说体重较轻,身高大于或等于
我们说身高较高,身高小于170cm我们说身高较矮.
![]()
(1)已知某高中共有32名男体育特长生,其身高与
指数的数据如散点图,请根据所得信息,完成下述列联表,并判断是否有
的把握认为男生的身高对
指数有影响.
身高较矮 | 身高较高 | 合计 | |
体重较轻 | |||
体重较重 | |||
合计 |
(2)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如表所示:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
体重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根据最小二乘法的思想与公式求得线性回归方程为
.利用已经求得的线性回归方程,请完善下列残差表,并求解释变量(身高)对于预报变量(体重)变化的贡献值(保留两位有效数字)
;
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
体重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
残差 | 0.1 | 0.3 | 0.9 |
|
|
②通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误,已知通过重新采集发现,该组数据的体重应该为
.请重新根据最最小二乘法的思想与公式,求出男体育特长生的身高与体重的线性回归方程.
(参考公式)
,
,
,
,
.
(参考数据)
,
,
,
,
.
![]()
0.10
0.05
0.01
0.005
![]()
2.706
3.811
6.635
7.879
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点
到定点
的距离比到
轴的距离多
.
(1)求动点
的轨迹
的方程;
(2)设
,
是轨迹
在
上异于原点
的两个不同点,直线
和
的倾斜角分别为
和
,当
,
变化且
时,证明:直线
恒过定点,并求出该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com