【题目】选修4-5:不等式选讲:已知函数
,a为实数.
(I)当a=1时,求不等式
的解集;
(II)求
的最小值.
【答案】(I)
的最小值为2.
【解析】
(Ⅰ)将a=1代入不等式并通分,按照零点分段分三种情况讨论x并去掉绝对值,解出x的范围,即可得出不等式的解集;
(Ⅱ)令x=a,分类讨论a去掉绝对值,分别求出最小值取并集,即f(a)的最小值.
(Ⅰ)当a=1时,不等式f(x)>4即
4,
①当x<﹣1时,2>4无解;
②当x∈[﹣1,0)∪(0,1]时,
4,解得|x|
,得
x<0或0<x
;
③当x>1时,2>4无解;
综上,不等式f(x)>4的解集为(
,0)∪(0,
).
(Ⅱ)f(a)
,
①当a<﹣1或a>1时,f(a)
2|a|>2,
②当﹣1≤a≤1且a≠0时,f(a)
2,
综上可知,f(a)的最小值为2.
科目:高中数学 来源: 题型:
【题目】2018年11月21日,意大利奢侈品牌“
﹠
”在广告中涉嫌辱华,中国明星纷纷站出来抵制该品牌,随后京东、天猫、唯品会等中国电商平台全线下架了该品牌商品,当天有大量网友关注此事件,某网上论坛从关注此事件跟帖中,随机抽取了100名网友进行调查统计,先分别统计他们在跟帖中的留言条数,再把网友人数按留言条数分成6组:
,
,
,
,
,
,得到如图所示的频率分布直方图;
![]()
并将其中留言不低于40条的规定为“强烈关注”,否则为“一般关注”,对这100名网友进一步统计得到列联表的部分数据如下表.
一般关注 | 强烈关注 | 合计 | |
男 | 45 | ||
女 | 10 | 55 | |
合计 | 100 |
(1)在答题卡上补全列联表中数据;并判断能否有95%的把握认为网友对此事件是否为“强烈关注”与性别有关?
(2)现已从“强烈关注”的网友中按性别分层抽样选取了5人,再从这5人中选取2人,求这2人中至少有1名女性的概率.
参考公式及数据:
,
| 0.05 | 0.010 |
| 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
参加书法社团 | 未参加书法社团 | |
参加演讲社团 | 8 | 5 |
未参加演讲社团 | 2 | 30 |
(1)从该班随机选1名同学,求该同学至少参加一个社团的概率;
(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a∈R,函数f(x)=(-x2+ax)ex(x∈R).
(1)当a=2时,求函数f(x)的单调区间;
(2)若函数f(x)在(-1,1)上单调递增,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是圆
上的任意一点,
是过点
且与
轴垂直的直线,
是直线
与
轴的交点,点
在直线
上,且满足
.当点
在圆
上运动时,记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)已知直线
与曲线
交于
,
两点,点
关于
轴的对称点为
,证明:直线
过定点
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线y=x2+mx–2与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:
(1)能否出现AC⊥BC的情况?说明理由;
(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是一个
的方格表,在每一个小方格内各填一个正整数.若
中的一个
方格表的所有数的和为10的倍数,则称其为“好矩形”;若
中的一个
的小方格不包含于任何一个好矩形,则称其为“坏格”.求
中坏格个数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分,(1)小问7分,(2)小问5分)
设函数![]()
(1)若
在
处取得极值,确定
的值,并求此时曲线
在点
处的切线方程;
(2)若
在
上为减函数,求
的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com