【题目】在平面直角坐标系
中,点
关于直线
对称的点
位于抛物线
上.
(1)求抛物线
的方程;
(2)设抛物线
的准线与其对称轴的交点为
,过点
的直线
交抛物线
于点
,
,直线
交抛物线
于另一点
,求直线
所过的定点.
科目:高中数学 来源: 题型:
【题目】某良种培育基地正在培育一种小麦新品种A,将其与原有的一个优良品种B进行对照试验,两种小麦各种植了24亩,所得亩产数据(单位:千克)如下:
品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,451,454
品种B:363,371,374,383,385,386,391,392,394,395,397,397,400,401,401,403,406,407,410,412,415,416,422,430
(1)画出茎叶图.
(2)用茎叶图处理现有的数据,有什么优点?
(3)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体QPABCD为一简单组合体,在底面ABCD中,∠DAB=60°,AD⊥DC,AB⊥BC,QD⊥平面ABCD,PA∥QD,PA=1,AD=AB=QD=2.
![]()
(1)求证:平面PAB⊥平面QBC;
(2)求该组合体QPABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O。D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形。沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥。当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______。
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,
是边长等于2的等边三角形,四边形
是菱形,
,
,
是棱
上的点,
.
,
分别是
,
的中点.
![]()
(1)求证:
平面
;
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面PAC⊥平面ABC,点E、F、O分别为线段PA、PB、AC的中点,点G是线段CO的中点,AB=BC=AC=4,PA=PC=2
.求证:
![]()
(1)PA⊥平面EBO;
(2)FG∥平面EBO.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】气象意义上,从春季进入夏季的标志为:“连续5天的日平均温度不低于22℃”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):
①甲地:5个数据的中位数为24,众数为22;
②乙地:5个数据的中位数为27,总体均值为24;
③丙地:5个数据的中有一个数据是32,总体均值为26,总体方差为10.8;
则肯定进入夏季的地区的有( )
A. ①②③ B. ①③ C. ②③ D. ①
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com