精英家教网 > 高中数学 > 题目详情

【题目】西光厂眼镜车间接到一批任务,需要加工6000个型零件和2000个型零件.这个车间有214名工人,他们每一个人加工5个型零件的时间可以加工3个型零件.将这些工人分成两组,两组同时工作,每组加工一种型号的零件,为了在最短的时间内完成这批任务,应怎样分组?

【答案】加工型零件组的人数是137,另一组人数为77.

【解析】

解:设加工型零件的一组人数为,在单位时间里一个工人加工型零件数为,则另一组的人数为,在单位时间里一个人加工型零件数为.

加工型零件所需时间为

加工型零件所需时间为.

∴完成整个任务的时间为

,其中,.

这样,问题转化为求自然数,使得函数取最小值.

在区间上,为减函数,为增函数,故的最小值在取到,其中满足方程.

不是整数,而

∴加工型零件组的人数是137,另一组人数为77.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,底面是边长为4的正三角形,底面,点分别为的中点.

(1)求证:平面平面

(2)在线段上是否存在点,使得直线与平面所成的角的正弦值为?若存在,确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右顶点分别为,左焦点为,已知椭圆的离心率为,且过点.

(1)求椭圆的方程;

(2)若过点的直线与该椭圆交于两点,且线段的中点恰为点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,底面 的中点.

(1)求证:

(2)求点D与平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量2sinxcosx),cosx2cosx).

1)若xkπkZ,且,求2sin2xcos2x的值;

2)定义函数fx,求函数fx)的单调递减区间;并求当x[0]时,函数fx)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中在校学生2000为了响应“阳光体育运动”号召,学校举行了跑步和登山比赛活动每人都参加而且只参与了其中一项比赛,各年级参与比赛人数情况如表:

高一年级

高二年级

高三年级

跑步

a

b

c

登山

x

y

z

其中ab35,全校参与登山的人数占总人数的,为了了解学生对本次活动的满意程度,现用分层抽样方式从中抽取一个100个人的样本进行调查,则高二年级参与跑步的学生中应抽取  

A. 6B. 12C. 18D. 24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中是自然对数的底数.

1)求曲线处的切线方程;

2)设,求函数的单调区间;

3)设,求证:当时,函数恰有2个不同零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如表1所示.

1

积极参加班级工作

不积极参加班级工作

合计

学习积极性高

17

8

25

学习积极性一般

5

20

25

合计

22

28

50

(1)如果随机从该班抽查一名学生,抽到积极参加班级工作的学生的概率是多少?抽到不积极参加班级工作且学习积极性一般的学生的概率是多少?

(2)试运用独立性检验的思想方法学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.

参考表2

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.706

0.05

0.010

0.005

0.001

3.841

6.635

7.879

10.8

查看答案和解析>>

同步练习册答案