精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,平面.且四边形是菱形,.

(1)求证:

(2)若,三棱锥的体积为,求的面积.

【答案】(1)见解析;(2).

【解析】

试题(1)连结,因为平面,可得.

因为四边形是菱形,可知,然后根据线面垂直的判定定理可得平面.据此即可证明结果;(2)由平面可知.设菱形的边长为,因为,由余弦定理可得.因为,由勾股定理得,所以.因为平面,可得,所以在中,.因为,可得:,根据,据此即可求出结果.

试题解析:

(1)证明:连结

因为平面平面,所以.

因为四边形是菱形,所以,

又因为 ,所以平面.

因为平面,所以.

(2)由平面可知.

设菱形的边长为

因为,所以.

因为,所以,所以.

因为平面侧面,所以,

所以在中,.

因为,

解得:,所以.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市春节期间7家超市的广告费支出(万元)和销售额(万元)数据如下:

(1)若用线性回归模型拟合的关系,求关于的线性回归方程;

(2)用二次函数回归模型拟合的关系,可得回归方程: ,计算二次函数回归模型和线性回归模型的分别约为0.75和0.97,请用说明选择个回归模型更合适,并用此模型预测超市广告费支出为8万元时的销售额.

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班共有学生45人,其中女生18人,现用分层抽样的方法,从男、女学生中各抽取若干学生进行演讲比赛,有关数据见下表(单位:人)

性别

学生人数

抽取人数

女生

18

男生

3

1)求

2)若从抽取的学生中再选2人做专题演讲,求这2人都是男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的参数方程为为参数.在以原点为极点,为参数).在以原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为

(Ⅰ)求曲线C的普通方程和直线的直角坐标方程;

(Ⅱ)设,直线与曲线C交于MN两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效的改良玉米品种,为农民提供技术支.现对已选出的一组玉米的茎高进行统计,获得茎叶图如右图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.

1)完成列联表,并判断是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?

2①按照分层抽样的方式,在上述样本中,从易倒伏和抗倒伏两组中抽取9株玉米,设取出的易倒伏矮茎玉米株数为,求的分布列(概率用组合数算式表示);

②若将频率视为概率,从抗倒伏的玉米试验田中再随机抽取出50株,求取出的高茎玉米株数的数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知对称轴为坐标轴的双曲线有一条渐近线为2x﹣y=0,则该双曲线的离心率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,圆,定点,点是圆上一动点,线段的垂直平分线交圆的半径于点,点的轨迹为.

(1)求曲线的方程;

(2)已知点是曲线上但不在坐标轴上的任意一点,曲线轴的焦点分别为,直线分别与轴相交于两点,请问线段长之积是否为定值?如果还请求出定值,如果不是请说明理由;

(3)在(2)的条件下,若点坐标为(-1,0),设过点的直线相交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(e为自然对数的底数),

(I)记.

(i)讨论函数单调性;

(ii)证明当时,恒成立

(II)令,设函数G(x)有两个零点,求参数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中.

(1)当时,求函数单调递增区间;

(2)求证:对任意,函数的图象在点处的切线恒过定点;

(3)是否存在实数的值,使得上有最大值或最小值,若存在,求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案