【题目】(本小题满分13分)在四棱锥
中,
, ![]()
,
平面
,直线PC与平面ABCD所成角为
,
.
![]()
(Ⅰ)求四棱锥
的体积
;
(Ⅱ)若
为
的中点,求证:平面
平面
.
科目:高中数学 来源: 题型:
【题目】 如图,在四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=
,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.
![]()
(1) 求直线PB与平面POC所成角的余弦值;
(2)线段
上是否存在一点
,使得二面角
的余弦值为
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为
,服用B有效的概率为
.
(Ⅰ)求一个试验组为甲类组的概率;
(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,点
在直线
上.数列
满足
,且
,前11项和为
.
(1)求数列
、
的通项公式;
(2)设
是否存在
,使得
成立?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=
,EF交BD于点H.将△DEF沿EF折到△
的位置,
.![]()
(1)证明:
平面ABCD;
(2)求二面角
的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com