【题目】下表为
年至
年某百货零售企业的线下销售额(单位:万元),其中年份代码
年份
.
年份代码 |
|
|
|
|
线下销售额 |
|
|
|
|
(1)已知
与
具有线性相关关系,求
关于
的线性回归方程,并预测
年该百货零售企业的线下销售额;
(2)随着网络购物的飞速发展,有不少顾客对该百货零售企业的线下销售额持续增长表示怀疑,某调查平台为了解顾客对该百货零售企业的线下销售额持续增长的看法,随机调查了
位男顾客、
位女顾客(每位顾客从“持乐观态度”和“持不乐观态度”中任选一种),其中对该百货零售企业的线下销售额持续增长持乐观态度的男顾客有
人、女顾客有
人,能否在犯错误的概率不超过
的前提下认为对该百货零售企业的线下销售额持续增长所持的态度与性别有关?
参考公式及数据:
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
【答案】(1)
. 预测
年该百货零售企业的线下销售额为
万元.
(2) 可以在犯错误的概率不超过
的前提下认为对该百货零售企业的线下销售额持续增长所持的态度与性别有关.
【解析】试题分析:(1)第(1)问,直接利用公式求出线性回归方程,再根据线性回归方程预测. (2)第(2)问,先完成2×2列联表,再求出
的观测值
,最后下结论.
试题解析:
(1)由题意得
,
,
所以
,
所以
,
所以
关于
的线性回归方程为
.
由于
,所以当
时,
,
所以预测2018年该百货零售企业的线下销售额为377.5万元.
(2)由题可得
列联表如下:
![]()
故
的观测值
,
由于
,所以可以在犯错误的概率不超过0.025的前提下认为对该百货零售企业的线下销售额持续増长所持的态度与性别有关.
科目:高中数学 来源: 题型:
【题目】已知圆
,点
坐标为
.
(1)如图1,斜率存在且过点
的直线
与圆交于
两点.①若
,求直线
的斜率;②若
,求直线
的斜率.
![]()
(2)如图2,
为圆
上两个动点,且满足
,
为
中点,求
的最小值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:千元)对年销售量
(单位:
)和年利润
(单位:千元)的影响,对近13年的宣传费
和年销售量
数据作了初步处理,得到下面的散点图及一些统计量的值.
![]()
由散点图知,按
建立
关于
的回归方程是合理的.令
,则
,经计算得如下数据:
|
|
|
|
|
|
10.15 | 109.94 | 0.16 | -2.10 | 0.21 | 21.22 |
(1)根据以上信息,建立
关于
的回归方程;
(2)已知这种产品的年利润
与
的关系为
.根据(1)的结果,求当年宣传费
时,年利润的预报值是多少?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M的方程为x2+(y-2)2=1,直线l的方程为x-2y=0,点P在直线l上,过点P作圆M的切线PA,PB,切点为A,B.
(Ⅰ)若∠APB=60°,试求点P的坐标;
(Ⅱ)若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当CD=
时,求直线CD的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知椭圆C:
的左右焦点分别为F1,F2,直线l:y=kx+m与椭圆C交于A,B两点.O为坐标原点.
(1)若直线l过点F1,且|AB|=
,求k的值;
(2)若以AB为直径的圆过原点O,试探究点O到直线AB的距离是否为定值?若是,求出该定值;若不是,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数
满足下列条件:在定义域内存在
,使得
成立,则称函数
具有性质
;反之,若
不存在,则称函数
不具有性质
.
(1)已知函数
具有性质
,求出对应的
的值;
(2)证明:函数
一定不具有性质
;
(3)下列三个函数:
,
,
,哪些恒具有性质
,并说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
![]()
(1)证明:BE⊥DC;
(2)求直线BE与平面PBD所成角的正弦值;
(3)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将一铁块高温融化后制成一张厚度忽略不计、面积为100dm2的矩形薄铁皮(如图),并沿虚线l1,l2裁剪成A,B,C三个矩形(B,C全等),用来制成一个柱体.现有两种方案:
方案①:以
为母线,将A作为圆柱的侧面展开图,并从B,C中各裁剪出一个圆形作为圆柱的两个底面;
方案②:以
为侧棱,将A作为正四棱柱的侧面展开图,并从B,C中各裁剪出一个正方形(各边分别与
或
垂直)作为正四棱柱的两个底面.
(1)设B,C都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面半径;
(2)设
的长为
dm,则当
为多少时,能使按方案②制成的正四棱柱的体积最大?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com