精英家教网 > 高中数学 > 题目详情

【题目】101日,某品牌的两款最新手机(记为型号,型号)同时投放市场,手机厂商为了解这两款手机的销售情况,在101日当天,随机调查了5个手机店中这两款手机的销量(单位:部),得到下表:

手机店

型号手机销量

6

6

13

8

11

型号手机销量

12

9

13

6

4

(Ⅰ)若在101日当天,从这两个手机店售出的新款手机中各随机抽取1部,求抽取的2部手机中至少有一部为型号手机的概率;

(Ⅱ)现从这5个手机店中任选3个举行促销活动,用表示其中型号手机销量超过型号手机销量的手机店的个数,求随机变量的分布列和数学期望;

(III)经测算,型号手机的销售成本(百元)与销量(部)满足关系.若表中型号手机销量的方差,试给出表中5个手机店的型号手机销售成本的方差的值.(用表示,结论不要求证明)

【答案】(I);(II)见解析;(Ⅲ)

【解析】

(Ⅰ)将从这两个手机店售出的新款手机中分别随机抽取的1部手机记为甲和乙,记事件“甲手机为型号手机”为,记事件“乙手机为型号手机”为,分别求出的值,根据相互独立事件的公式求出,最后利用对立事件概率公式求出抽取的2部手机中至少有1部为型号手机的概率;

(Ⅱ)由表可知:型号手机销量超过型号手机销量的手机店共有2个,故的所有可能取值为:0,1,2,分别求出的值,写出随机变量的分布列,并根据数学期望计算公式求出

(III)根据方差的性质和变量的关系即可求出方差的值.

(Ⅰ)将从这两个手机店售出的新款手机中分别随机抽取的1部手机记为甲和乙,

记事件“甲手机为型号手机”为,记事件“乙手机为型号手机”为

依题意,有,且事件相互独立.

设“抽取的2部手机中至少有1部为型号手机”为事件

即抽取的2部手机中至少有1部为型号手机的概率为

(Ⅱ)由表可知:型号手机销量超过型号手机销量的手机店共有2个,

的所有可能取值为:0,1,2

所以随机变量的分布列为:

0

1

2

(III).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设有关于的一元二次方程

)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率.

)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,已知曲线,将曲线上的点向左平移一个单位,然后纵坐标不变,横坐标轴伸长到原来的2倍,得到曲线,又已知直线是参数),且直线与曲线交于两点.

I)求曲线的直角坐标方程,并说明它是什么曲线;

II)设定点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究性学习小组对无现金支付(支付宝、微信、银行卡)的用户进行问卷调查,随机选取了人(图1),按年龄分为青年组与中老年组,如图2.

1)完成图2的列联表,并判断是否有的把握认为使用支付宝用户与年龄有关系?

2)现从调查的中老年组中按分层抽样的方法选出人,再随机抽取人赠送礼品,试求抽取的人中恰有人为非支付宝用户的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为

1)记甲击中目标的次数为,求的概率分布及数学期望;

2)求乙至多击目标2次的概率;

3)求甲恰好比乙多击中目标2次的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线方程为.

(1)求函数的解析式;

(2)若关于的方程恰有两个不同的实根,求实数的值;

(3)数列满足.

证明:①

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图像上的点处的切线方程为

1若函数时有极值的表达式;

2函数在区间上单调递增求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x+1)ln x-2x.

(1)求函数的单调区间;

(2)设h(x)=f′(x)+,若h(x)>k(kZ)恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学将100名高一新生分成水平相同的甲,乙两个平行班,每班50.陈老师采用AB两种不同的教学方式分别在甲,乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下,计成绩不低于90分者为成绩优秀”.

1)从乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均成绩优秀的概率.

2)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为成绩优秀与教学方式有关.

甲班(A方式)

乙班(B方式)

总计

成绩优秀

成绩不优秀

总计

附:临界值表

查看答案和解析>>

同步练习册答案