精英家教网 > 高中数学 > 题目详情

知圆C1:x2+y2-10x-10y=0和圆C2: x2+y2+6x+2y-40=0相交于AB两点,求公共弦AB的长.

.


解析:

由两圆的方程相减,消去二次项得到一个二元一次方程,此方程即为公共弦AB所在的直线方程:4x+3y-10=0.

AB的坐标分别是(-2,6)、(4,-2).

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C1:x2+y2=4和圆C2:x2+y2+4x-4y+4=0关于直线l对称,则直线l的方程为_____________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:x2+y2-2mx+4y+m2-5=0, 圆C2: x2+y2+2x-2my+m2-3=0,当m为何值时,圆C1与圆C2相切?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:x2+y2+2x-6y+1=0,圆C2:x2+y2-4x+2y-11=0,求两圆的公共弦所在的直线方程及公共弦长.

活动:学生审题,思考并交流,探讨解题的思路,教师及时提示引导,因两圆的交点坐标同时满足两个圆方程,联立方程组,消去x2项、y2项,即得两圆的两个交点所在的直线方程,利用勾股定理可求出两圆公共弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:x2+y2+2x+8y-8=0,圆C2:x2+y2-4x-4y-2=0,判断两圆的位置关系.

查看答案和解析>>

同步练习册答案