【题目】如图所示,在△ABC中,B=
,AC=2
,cosC=
. ![]()
(1)求sin∠BAC的值及BC的长度;
(2)设BC的中点为D,求中线AD的长.
【答案】
(1)解:∵在△ABC中,B=
,AC=2
,cosC=
,
∴sinC=
=
,
∴sin∠BAC=sin(B+C)=sinBcosC+cosBsinC=
×
+
×
=
;
由正弦定理得:
=
,即BC=
=
=6
(2)解:在△ADC中,CD=
BC=3,AC=2
,cosC=
,
由余弦定理得:AD2=AC2+DC2﹣2ACDCcosC=20+9﹣2×2
×3×
=5,
则AD= ![]()
【解析】(1)由cosC的值求出sinC的值,根据诱导公式得到sin∠BAC=sin(B+C),利用两角和与差的正弦函数公式化简,将各自的值代入计算求出值,再由sin∠BAC,sinB,以及AC的长,利用正弦定理求出BC的长即可;(2)根据D为BC中点,求出CD的长,再由AC与cosC的值,利用余弦定理求出AD的长即可.
【考点精析】认真审题,首先需要了解余弦定理的定义(余弦定理:
;
;
).
科目:高中数学 来源: 题型:
【题目】为研究患肺癌与是否吸烟有关,做了一次相关调查,其中部分数据丢失,但可以确定的是不吸烟人数与吸烟人数相同,吸烟患肺癌人数占吸烟总人数的
;不吸烟的人数中,患肺癌与不患肺癌的比为
.
(1)若吸烟不患肺癌的有
人,现从患肺癌的人中用分层抽样的方法抽取
人,再从这
人中随机抽取
人进行调查,求这两人都是吸烟患肺癌的概率;
(2)若研究得到在犯错误概率不超过
的前提下,认为患肺癌与吸烟有关,则吸烟的人数至少有多少?
附:
,其中
.
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人在静水中游泳,速度为4
公里/小时,他在水流速度为4公里/小时的河中游泳.
(1)若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度为多少?
(2)他必须朝哪个方向游,才能沿与水流垂直的方向前进?实际前进的速度为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的一个焦点与上、下顶点构成直角三角形,以椭圆
的长轴长为直径的圆与直线
相切.
(1)求椭圆
的标准方程;
(2)设过椭圆右焦点且不平行于
轴的动直线与椭圆
相交于
两点,探究在
轴上是否存在定点
,使得
为定值?若存在,试求出定值和点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF为正三角形.![]()
(1)求C的方程;
(2)若直线l1∥l,且l1和C有且只有一个公共点E,
(ⅰ)证明直线AE过定点,并求出定点坐标;
(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某教师调查了
名高三学生购买的数学课外辅导书的数量,将统计数据制成如下表格:
男生 | 女生 | 总计 | |
购买数学课外辅导书超过 |
|
|
|
购买数学课外辅导书不超过 |
|
|
|
总计 |
|
|
|
(Ⅰ)根据表格中的数据,是否有
的把握认为购买数学课外辅导书的数量与性别相关;
(Ⅱ)从购买数学课外辅导书不超过
本的学生中,按照性别分层抽样抽取
人,再从这
人中随机抽取
人询问购买原因,求恰有
名男生被抽到的概率.
附:
,
.
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,已知
a=2csinA.
(1)求角C的值;
(2)若c=
,且S△ABC=
,求a+b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,一个圆柱形乒乓球筒,高为
厘米,底面半径为
厘米.球筒的上底和下底分别粘有一个乒乓球,乒乓球与球筒底面及侧面均相切(球筒和乒乓球厚度忽略不计).一个平面与两乒乓球均相切,且此平面截球筒边缘所得的图形为一个椭圆,则该椭圆的离心率为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com