【题目】如图,已知四边形
是边长为1的正方形,点
、
、
、
顺次在边
、
、
、
上,且
.过点
、
、
、
分别作射线
、
、
、
,且
,这里
为定角,且
,由此得到四边形
.
![]()
(1)问四边形
是怎样的四边形?证明你的结论.
(2)设
,试将
表示成
的函数.
(3)是否存在
,使
为与
无关的定值?若存在,求出相应的
的值;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】如图,某广场中间有一块边长为2百米的菱形状绿化区ABCD,其中BMN是半径为1百米的扇形,∠ABC=
.管理部门欲在该地从M到D修建小路:在
上选一点P(异于M,N两点),过点P修建与BC平行的小路PQ. ![]()
(1)若∠PBC=
,求PQ的长度;
(2)当点P选择在何处时,才能使得修建的小路
与PQ及QD的总长最小?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C1:
+
=1,圆C2:x2+y2=t经过椭圆C1的焦点.
(1)设P为椭圆上任意一点,过点P作圆C2的切线,切点为Q,求△POQ面积的取值范围,其中O为坐标原点;
(2)过点M(﹣1,0)的直线l与曲线C1 , C2自上而下依次交于点A,B,C,D,若|AB|=|CD|,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果函数
在其定义域内存在
,使得
成立,则称函数
为“可分拆函数”.
(1)试判断函数
是否为“可分拆函数”?并说明你的理由;
(2)设函数
为“可分拆函数”,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】去年“十一”期间,昆曲高速公路车辆较多.某调查公司在曲靖收费站从7座以下小型汽车中按进收费站的先后顺序,每间隔50辆就抽取一辆的抽样方法抽取40辆汽车进行抽样调查,将他们在某段高速公路的车速(
)分成六段:
,
,
,
,
,
后,得到如图的频率分布直方图.
![]()
(I)调查公司在抽样时用到的是哪种抽样方法?
(II)求这40辆小型汽车车速的众数和中位数的估计值;
(III)若从这40辆车速在
的小型汽车中任意抽取2辆,求抽出的2辆车车速都在
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P与两个定点O(0,0),A(-3,0)距离之比为
.
(1)求点P的轨迹C方程;
(2)求过点M(2,3)且被轨迹C截得的线段长为2
的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
,g(x)=lnx,其中e为自然对数的底数.
(1)求函数y=f(x)g(x)在x=1处的切线方程;
(2)若存在x1 , x2(x1≠x2),使得g(x1)﹣g(x2)=λ[f(x2)﹣f(x1)]成立,其中λ为常数,求证:λ>e;
(3)若对任意的x∈(0,1],不等式f(x)g(x)≤a(x﹣1)恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com