(本小题满分12分)
设函数![]()
(Ⅰ) 当
时,求函数
的最大值;
(Ⅱ)当
,
,方程
有唯一实数解,求正数
的值.
(1)
的极大值为
,此即为最大值;(2)
。
解析试题分析:(1)依题意,知
的定义域为(0,+∞),当
时,
,
……………2分
令
=0,解得
.(∵
)
当
时,
,此时
单调递增;当
时,
,此时
单调递减.
所以
的极大值为
,此即为最大值 ……………4分
(2)因为方程
有唯一实数解,所以
有唯一实数解,
设
,则
.令
,
.
因为
,
, 所以
(舍去),
,…… 6分
当
时,
,
在(0,
)上单调递减,
当
时,
,
在(
,+∞)单调递增
当
时,
=0,
取最小值
.
则
既
……………10分
所以
,因为
,所以
(*)
设函数
,因为当
时,
是增函数,所以
至多有一解.
因为
,所以方程(*)的解为
,即
,解得
………12分
(直接看出x=1时,m=1/2但未证明唯一性的给3分)
考点:本题主要考查应用导数研究函数的单调性、极值及方程解的情况。
点评:典型题,本题属于导数应用中的基本问题,通过研究函数的单调性,明确了极值情况。通过研究函数的单调区间、最值情况,得出方程解的存在情况。涉及对数函数,要特别注意函数的定义域。
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
设函数
,其中
.
( I )若函数
图象恒过定点P,且点P在
的图象上,求m的值;
(Ⅱ)当
时,设
,讨论
的单调性;
(Ⅲ)在(I)的条件下,设
,曲线
上是否存在两点P、Q,
使△OPQ(O为原点)是以O为直角顶点的直角三角形,且该三角形斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
其中
.(1)求函数
的单调区间;(2)若函数
在区间
内恰有两个零点,求
的取值范围;
(3)当
时,设函数
在区间
上的最大值为
最小值为
,记
,求函数
在区间
上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,
为
的导数.
(1)当
时,求
的单调区间和极值;
(2)设
,是否存在实数
,对于任意的
,存在
,使得
成立?若存在,求出
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,ABCD是一块边长为100m的正方形地皮,其中AST是一半径为90m的扇形小山,其他部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P在弧ST上,相邻两边CQ,CR落在正方形的边BC,CD上,求矩形停车场PQCR的面积S的最大值和最小值(结果取整数).![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数![]()
(1)如果函数
的单调减区间为
,求函数
的解析式;
(2)在(1)的条件下,求函数
的图像过点
的切线方程;
(3)证明:对任意的
,不等式
恒成立,求实数
的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com