【题目】函数f(x)=Asin(ωx+φ)(ω>0,
)的部分图象如图所示,将函数f(x)的图象向右平移
个单位后得到函数g(x)的图象,若函数g(x)在区间
(
)上的值域为[﹣1,2],则θ= . ![]()
【答案】![]()
【解析】解:根据函数f(x)=Asin(ωx+φ)(ω>0,
)的部分图象,
可得A=﹣2,
=
=
,∴ω=2.
再根据五点法作图可得2
+φ=π,∴φ=
,f(x)=﹣2sin(2x+
).
将函数f(x)的图象向右平移
个单位后得到函数g(x)=﹣2sin(2x﹣
+
)=﹣2sin(2x﹣
)的图象,
对于函数y=g(x),当x∈
(
),2x﹣
∈[﹣π,2θ﹣
],
由于g(x)的值域为[﹣1,2],故﹣2sin(2x﹣
)的最小值为﹣1,此时,2sin(2θ﹣
)=
,
则θ=
,
所以答案是:
.
【考点精析】根据题目的已知条件,利用函数y=Asin(ωx+φ)的图象变换的相关知识可以得到问题的答案,需要掌握图象上所有点向左(右)平移
个单位长度,得到函数
的图象;再将函数
的图象上所有点的横坐标伸长(缩短)到原来的
倍(纵坐标不变),得到函数
的图象;再将函数
的图象上所有点的纵坐标伸长(缩短)到原来的
倍(横坐标不变),得到函数
的图象.
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,DA⊥平面PAB,DC∥AB,DA=DC=2,AB=AP=4,∠PAB=120°,M为PB中点.
(Ⅰ)求证:CM∥平面PAD;
(Ⅱ)求二面角M﹣AC﹣B的余弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在原点,离心率为
,右焦点到直线
的距离为2.
(1)求椭圆
的方程;
(2)椭圆下顶点为
,直线
(
)与椭圆相交于不同的两点
,当
时,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=sin(ωx+φ)(其中|φ|<
)的图象如图所示,为了得到y=sinωx的图象,只需把y=f(x)的图象上所有点( ) ![]()
A.向左平移
个单位长度
B.向右平移
个单位长度
C.向左平移
个单位长度
D.向右平移
个单位长度
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=e2x , g(x)=kx+1(k∈R). (Ⅰ)若直线y=g(x)和函数y=f(x)的图象相切,求k的值;
(Ⅱ)当k>0时,若存在正实数m,使对任意x∈(0,m),都有|f(x)﹣g(x)|>2x恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等差数列{an}中,a2+a7=﹣23,a3+a8=﹣29
(1)求数列{an}的通项公式;
(2)设数列{an+bn}是首项为1,公比为2的等比数列,求{bn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,斜三棱柱ABC﹣A1B1C1中,侧面AA1B1B为菱形,底面△ABC是等腰直角三角形,∠BAC=90°,A1B⊥B1C. ![]()
(1)求证:直线AC⊥直线BB1;
(2)若直线BB1与底面ABC成的角为60°,求二面角A﹣BB1﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A、B、C所对的边分别为a,b,c,满足(2a﹣c)cosB=bcosC. ![]()
(1)求B的大小;
(2)如图,AB=AC,在直线AC的右侧取点D,使得AD=2CD=4.当角D为何值时,四边形ABCD面积最大.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com