【题目】已知命题p:函数f(x)=x2+2mx+1在(-2,+∞)上单调递增;命题q:函数g(x)=2x2+2
(m-2)x+1的图象恒在x轴上方,若p∨q为真,p∧q为假,求m的取值范围.
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形CDEF为正方形,四边形ABCD为梯形,
,
,
,
平面ABCD.
![]()
求BE与平面EAC所成角的正弦值;
线段BE上是否存在点M,使平面
平面DFM?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个焦点分别是
,
,且点
在椭圆
上.
(1)求椭圆
的标准方程;
(2)设椭圆
的左顶点为
,过点
的直线
与椭圆
相交于异于
的不同两点
,
,求
的面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若两直线
的倾斜角分别为
与
,则下列四个命题中正确的是( )
A. 若
<
,则两直线的斜率:k1 < k2 B. 若
=
,则两直线的斜率:k1= k2
C. 若两直线的斜率:k1 < k2 ,则
<
D. 若两直线的斜率:k1= k2 ,则
=![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程
(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:
.
Ⅰ
直线l的参数方程化为极坐标方程;
Ⅱ
求直线l与曲线C交点的极坐标
其中
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若对于曲线f(x)=-ex-x(e为自然对数的底数)的任意切线l1,总存在曲线g(x)=ax+2cosx的切线l2,使得l1⊥l2,则实数a的取值范围为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com