精英家教网 > 高中数学 > 题目详情
14.在△ABC中,角A,B,C的对边分别为a,b,c.已知A=45°,cosB=$\frac{4}{5}$.
(1)求cosC的值;
(2)若BC=20,D为AB的中点,求CD的长.

分析 (1)cosC=cos(π-A-B)=-cos(A+B)=-cosAcosB+sinAsinB即可求解.
(2)由正弦定理得$\frac{BC}{sinA}=\frac{AC}{sinB}$⇒AC=12$\sqrt{2}$,由D为AB的中点,⇒${\overrightarrow{CD}}^{2}=\frac{1}{4}({\overrightarrow{CA}}^{2}+{\overrightarrow{CB}}^{2}+2\overrightarrow{CA}•\overrightarrow{CB})$=$\frac{1}{4}(288+400+2×12\sqrt{2}×20×(-\frac{\sqrt{2}}{10})$=592,即可求得CD

解答 解:(1)在△ABC中,由cosB=$\frac{4}{5}$.得sinB=$\frac{3}{5}$,
则cosC=cos(π-A-B)=-cos(A+B)=-cosAcosB+sinAsinB=-$\frac{\sqrt{2}}{2}×\frac{4}{5}+\frac{\sqrt{2}}{2}×\frac{3}{5}=-\frac{\sqrt{2}}{10}$.
(2)在△ABC中,∵sinB=$\frac{3}{5}$,A=45°,BC=20,
由正弦定理得$\frac{BC}{sinA}=\frac{AC}{sinB}$⇒AC=12$\sqrt{2}$,
∵D为AB的中点,∴$\overrightarrow{CD}=\frac{1}{2}(\overrightarrow{CA}+\overrightarrow{CB})$⇒${\overrightarrow{CD}}^{2}=\frac{1}{4}({\overrightarrow{CA}}^{2}+{\overrightarrow{CB}}^{2}+2\overrightarrow{CA}•\overrightarrow{CB})$=$\frac{1}{4}(288+400+2×12\sqrt{2}×20×(-\frac{\sqrt{2}}{10})$=592,
∴CD=4$\sqrt{37}$.

点评 本题考查了三角恒等变形,正弦定理,考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.△ABC中,$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AC}=\overrightarrow b$,$\overrightarrow{BD}=\frac{1}{2}\overrightarrow{DC}$,则$\overrightarrow{AD}$=(  )
A.$\frac{2}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$B.$\frac{1}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$C.$\frac{1}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$D.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=2sinx的图象上一点$(\frac{π}{3},\frac{{\sqrt{3}}}{2})$处的切线的倾斜角为(  )
A.$\frac{3π}{4}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=$\frac{{e}^{x}}{x}$.
求(1)函数f(x)的单调区间;
(2)当x>0时,求证:ex≥ex.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,直线l:y=2x-4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x-1上,求圆C的方程
(2)若过原点的直线m与圆C有公共点,求直线m的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各组函数f(x)与g(x)相同的是(  )
A.f(x)=1,g(x)=x0B.f(x)=x2,g(x)=(x+1)2
C.f(x)=x,g(x)=elnxD.f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x,}&{x≥0}\\{-x,}&{x<0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1+alnx}{x}$(a>0).
(Ⅰ)若函数f(x)在x=1处取得极值,且函数y=f(x)图象上一点的切线l过原点,求l的方程;
(Ⅱ)讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,在△ABC中,∠BAC=60°,AB=2,AC=1,D是BC边上一点,且$\overrightarrow{CD}$=2$\overrightarrow{DB}$,则$\overrightarrow{AD}$•$\overrightarrow{BC}$ 的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=-x2+2lnx与g(x)=ax+$\frac{1}{x}$(a∈R)有相同的极值点.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)证明:不等式f(x)+2g(x)>$\frac{2}{{e}^{x}}$-x2+2x(其中e为自然对数的底数);
(Ⅲ)不等式$\frac{f({x}_{1})-g({x}_{2})}{b-1}$≤1对任意x1,x2∈[$\frac{1}{e}$,3]恒成立,求实数b的取值范围.

查看答案和解析>>

同步练习册答案