精英家教网 > 高中数学 > 题目详情
9.在平面直角坐标系xOy中,直线l:y=2x-4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x-1上,求圆C的方程
(2)若过原点的直线m与圆C有公共点,求直线m的斜率k的取值范围.

分析 (1)联立两直线方程求出圆心坐标,直接代入圆的标准方程得答案;
(2)设出过原点的直线方程,由圆心到直线的距离等于半径求得斜率,则答案可求.

解答 解:(1)联立$\left\{\begin{array}{l}{y=2x-4}\\{y=x-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$.
∴圆心坐标为(3,2),由半径r=1,
∴圆C的方程为(x-3)2+(y-2)2=1;
(2)如图,
设直线m的方程为y=kx,
由圆心(3,2)到直线kx-y=0的距离d=$\frac{|3k-2|}{\sqrt{{k}^{2}+1}}=1$,
解得k=$\frac{3±\sqrt{3}}{4}$.
∴过原点的直线m与圆C有公共点,直线m的斜率k的取值范围是[$\frac{3-\sqrt{3}}{4},\frac{3+\sqrt{3}}{4}$].

点评 本题考查了圆的切线方程,点到直线的距离公式,以及圆与圆的位置关系的判定,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若(1-2x)2017=a0+a1x+…+a2017x2017(x∈R),则$\frac{a_1}{2^2}+\frac{a_2}{2^3}+…+\frac{{{a_{2017}}}}{{{2^{2018}}}}$=(  )
A.$\frac{1}{2}$B.1C.$-\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数z=-2+i所对应的点在复平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足2x+y=8,当2≤x≤3时,$\frac{y+1}{x-1}$的取值范围是$[\frac{3}{2},5]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知F1,F2是双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左,右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=$\frac{1}{3}$,则E的离心率为(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,角A,B,C的对边分别为a,b,c.已知A=45°,cosB=$\frac{4}{5}$.
(1)求cosC的值;
(2)若BC=20,D为AB的中点,求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=1+3cost\\ y=-2+3sint\end{array}\right.$(t为参数).在极坐标系(与平面直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,直线l的方程为$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=5.
(1)求圆C的普通方程及直线l的直角坐标方程;
(2)求圆心C到直线l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=lg(x2-3x+m)的定义域为R,则实数m的取值范围是($\frac{9}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图是判断“实验数”的程序框图,在[30,80]内的所有整数中,“实验数”的个数是12.

查看答案和解析>>

同步练习册答案